求以橢圓的焦點(diǎn)為焦點(diǎn),且過(guò)點(diǎn)的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
解析試題分析:首先設(shè)出雙曲線(xiàn)的標(biāo)準(zhǔn)方程,然后利用與橢圓的關(guān)系、雙曲線(xiàn)過(guò)點(diǎn)建立組可求得a,b的值.
試題解析:由橢圓的標(biāo)準(zhǔn)方程可知,橢圓的焦點(diǎn)在軸上.
設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.
根據(jù)題意, 解得或(不合題意舍去),
∴雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.
考點(diǎn):1、橢圓的幾何性質(zhì);2、雙曲線(xiàn)的方程求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的離心率為,左、右焦點(diǎn)分別為,點(diǎn)G在橢圓C上,且,的面積為3.
(1)求橢圓C的方程:
(2)設(shè)橢圓的左、右頂點(diǎn)為A,B,過(guò)的直線(xiàn)與橢圓交于不同的兩點(diǎn)M,N(不同于點(diǎn)A,B),探索直線(xiàn)AM,BN的交點(diǎn)能否在一條垂直于軸的定直線(xiàn)上,若能,求出這條定直線(xiàn)的方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線(xiàn)ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線(xiàn)l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線(xiàn)NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線(xiàn)OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿(mǎn)足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為軸,焦點(diǎn)為,拋物線(xiàn)上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)作直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)又本(xiàn)與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明和均為定值;
(2)設(shè)線(xiàn)段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓: 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過(guò) 的直線(xiàn) :(其中)與橢圓 相交于兩點(diǎn),且滿(mǎn)足:.
(1)試用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸是軸的拋物線(xiàn)經(jīng)過(guò)點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)過(guò)定點(diǎn),斜率為,當(dāng)為何值時(shí),直線(xiàn)與拋物線(xiàn)有公共點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:經(jīng)過(guò)如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動(dòng)點(diǎn)滿(mǎn)足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過(guò)點(diǎn)作直線(xiàn)l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)的直線(xiàn)的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com