滬杭高速公路全長(zhǎng)千米.假設(shè)某汽車(chē)從上海莘莊鎮(zhèn)進(jìn)入該高速公路后以不低于千米/時(shí)且不高于千米/時(shí)的時(shí)速勻速行駛到杭州.已知該汽車(chē)每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米/時(shí))的平方成正比,比例系數(shù)為;固定部分為200元.
(1)把全程運(yùn)輸成本(元)表示為速度(千米/時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)汽車(chē)應(yīng)以多大速度行駛才能使全程運(yùn)輸成本最?最小運(yùn)輸成本為多少元?

(1)
(2)(千米/小時(shí))時(shí)取等號(hào)   
答;當(dāng)速度為100(千米/小時(shí))時(shí),最小的運(yùn)輸成本為664元.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

是否存在實(shí)數(shù)a,使函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d6/4/16d4v2.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/61/7/1szdy3.png" style="vertical-align:middle;" />?若存在,求出a的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(Ⅰ)求的值;
(Ⅱ)求)的值;
(Ⅲ)當(dāng)時(shí),求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題13分)已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.
(1)求f(x)的解析式(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
某工廠(chǎng)去年的某產(chǎn)品的年銷(xiāo)售量為100萬(wàn)只,每只產(chǎn)品的銷(xiāo)售價(jià)為10元,每只產(chǎn)品固定成本為8元.今年,工廠(chǎng)第一次投入100萬(wàn)元(科技成本),并計(jì)劃以后每年比上一年多投入100萬(wàn)元(科技成本),預(yù)計(jì)銷(xiāo)售量從今年開(kāi)始每年比上一年增加10萬(wàn)只,第n次投入后,每只產(chǎn)品的固定成本為且n≥0),若產(chǎn)品銷(xiāo)售價(jià)保持不變,第n次投入后的年利潤(rùn)為萬(wàn)元.
(Ⅰ)求出的表達(dá)式;
(Ⅱ)若今年是第1年,問(wèn)第幾年年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算:(本小題滿(mǎn)分10分)
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)某產(chǎn)品生產(chǎn)單位產(chǎn)品時(shí)的總成本函數(shù)為.每單位產(chǎn)品的價(jià)格是134元,求使利潤(rùn)最大時(shí)的產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知函數(shù)
(1)若且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/8/wyl0j.gif" style="vertical-align:middle;" />,求的表達(dá)式;
(2)設(shè)為偶函數(shù),判斷能否大于零?并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案