20.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2.且經(jīng)過點(diǎn)(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$).
(I)求橢圓C的方程;
(Ⅱ)若過點(diǎn)D(4,O)的直線l與C交于不同的兩點(diǎn)A,B,且A在DB之間,試求△AOD與△BOD面積之比的取值范圍.

分析 (I)由題意可得:2c=2,$\frac{4}{9{a}^{2}}+\frac{24}{9^{2}}$=1,又a2=b2+c2,聯(lián)立解出即可得出.
(II)由題意可設(shè)直線l的方程為:x=my+4,代入橢圓方程可得:(3m2+4)y2+2my+36=0,由△>0,解得m2>4.設(shè)A(x1,y1),B(x2,y2).令λ=$\frac{{S}_{△AOD}}{{S}_{△BOD}}$=$\frac{\frac{1}{2}|OD||{y}_{1}|}{\frac{1}{2}|OD||{y}_{2}|}$=$\frac{{y}_{1}}{{y}_{2}}$,λ∈(0,1).把y1=λy2代入根與系數(shù)的關(guān)系,解得:m2=$\frac{4(λ+1)^{2}}{10λ-3{λ}^{2}-3}$>4,解出即可得出.

解答 解:(I)∵橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,且經(jīng)過點(diǎn)(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$),
∴2c=2,$\frac{4}{9{a}^{2}}+\frac{24}{9^{2}}$=1,又a2=b2+c2,聯(lián)立解得a=2,c=1,b2=3.
∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(II)由題意可設(shè)直線l的方程為:x=my+4,代入橢圓方程可得:(3m2+4)y2+24my+36=0,由△>0,解得m2>4.
設(shè)A(x1,y1),B(x2,y2).∴y1+y2=$\frac{-24m}{3{m}^{2}+4}$,y1y2=$\frac{36}{3{m}^{2}+4}$,(*),
令λ=$\frac{{S}_{△AOD}}{{S}_{△BOD}}$=$\frac{\frac{1}{2}|OD||{y}_{1}|}{\frac{1}{2}|OD||{y}_{2}|}$=$\frac{{y}_{1}}{{y}_{2}}$,λ∈(0,1).
把y1=λy2代入(*)可得:$\frac{(λ+1)^{2}}{λ}$=$\frac{16{m}^{2}}{3{m}^{2}+4}$,解得:m2=$\frac{4(λ+1)^{2}}{10λ-3{λ}^{2}-3}$>4,
則λ≠1,且3λ2-10λ+3<0,解得$\frac{1}{3}<λ<1$,
∴△AOD與△BOD面積之比的取值范圍是$(\frac{1}{3},1)$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、三角形面積計(jì)算公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x-a}{(x+a)^{2}}$.
(Ⅰ)若f′(a)=1,求a的值;
(Ⅱ)設(shè)a≤0,若對(duì)于定義域內(nèi)的任意x1,總存在x2使得f(x2)<f(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓:$\frac{{x}^{2}}{2}$+y2=1,已知A(1,0).B(2,0),若過B的直線與橢圓C交于P、Q兩點(diǎn).
(1)求證:∠QAB+∠PAB=π;
(2)求△QPQ面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.2015年6月1日約21時(shí)28分,一艘從南京駛往重慶的客船“東方之星”在長江中游湖北監(jiān)利水域遭遇龍卷風(fēng)翻沉.如圖所示,A,B是江面上位于東西方向相距5(3+$\sqrt{3}$)千米的兩個(gè)觀測點(diǎn).現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的客船東方之星(D點(diǎn))發(fā)出求救信號(hào),位于B點(diǎn)南偏西60°且與B點(diǎn)相距20$\sqrt{3}$千米的C點(diǎn)的救援船立即前往營救,其航行速度為30千米每小時(shí),該救援船到達(dá)D點(diǎn)需要多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某電視臺(tái)推出一檔游戲類綜藝節(jié)目,選手面對(duì)1-5號(hào)五扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂,選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應(yīng)的家庭夢想基金,回答每一扇門后,選手可自由選擇帶著目前獎(jiǎng)金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢想基金,但是一旦回答錯(cuò)誤,游戲結(jié)束并將之前獲得的所有夢想基金清零;整個(gè)游戲過程中,選手有一次求助機(jī)會(huì),選手可以詢問親友團(tuán)成員以獲得正確答案.
1-5號(hào)門對(duì)應(yīng)的家庭夢想基金依次為3000元,6000元,8000元、12000元、24000元(以上基金金額為打開大門后的累積金額)設(shè)某選手正確回答每扇門的歌曲名字的概率均為Pi且Pi=$\frac{6-i}{7-i}$(i=1,2,…,5),親友團(tuán)正確回答每一扇門的歌曲名字的概率均為$\frac{1}{5}$,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為$\frac{1}{2}$;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢想基金的概率;
(2)若選手在整個(gè)游戲過程中不使用求助,且獲得的家庭夢想基金數(shù)額為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=kex-1-x+$\frac{1}{2}$x2(k為常數(shù)),曲線y=f(x)在點(diǎn)(0,f(0))處的切線與x軸平行,則f(x)的單調(diào)遞減區(qū)間為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow$=(6,m),若$\overrightarrow{a}$⊥$\overrightarrow$,則|2$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.80B.160C.4$\sqrt{5}$D.4$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:若x(x-1)≠0,則x≠0且x≠1;命題q:若a>b,則ac>bc.則下列選項(xiàng)中是真命題的是(  )
A.p∨qB.¬p∨qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx(a∈R).
(1)當(dāng)a=$\frac{1}{2}$,求y=f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)y=f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案