【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.
(1)證明: ;
(2)若, ,求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】分析:(1) 先證明四邊形是平行四邊形,再證明,從而可得四邊形是菱形,進(jìn)而可得;(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,利用向量垂直數(shù)量積為零,列方程組求出平面的法向量,結(jié)合平面的法向量為,利用空間向量夾角余弦公式可得結(jié)果.
詳解:(1)證明: 在三棱柱中,,
.
又.
平面.
設(shè)與相交于點(diǎn),與相交于點(diǎn),連接,
四邊形與均是平行四邊形,
,平面,
,,
是平面與平面所成其中一個(gè)二面角的平面角.
又平面平面,
四邊形是菱形,從而.
(2)解:由(1)及題設(shè)可知四邊形是菱形, ,
.
以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
,,,
,.
設(shè)平面的法向量,
即
令,可得.
又由(1)可知平面,
可取平面的法向量為,
。由圖可知二面角的平面角為銳角,所以它的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過(guò)點(diǎn)A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2交y軸于B點(diǎn),圓C過(guò)點(diǎn)A且與l1, l2 都相切.
(1)求l2所在直線的方程和圓C的方程;
(2)設(shè)分別是直線l和圓C上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算,當(dāng)某產(chǎn)品促銷費(fèi)用為x(萬(wàn)元)時(shí),銷售量t(萬(wàn)件)滿足(其中,).現(xiàn)假定產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬(wàn)件還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為元/件.
(1)將該產(chǎn)品的利潤(rùn)y(萬(wàn)元)表示為促銷費(fèi)用x(萬(wàn)元)的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若在處取得極值,求過(guò)點(diǎn)且與在處的切線平行的直線方程;
(II)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),且時(shí),總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設(shè)與相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2(a).
(Ⅰ)當(dāng)a=1,解不等式f(x)>1;
(Ⅱ)設(shè)a>0,若對(duì)任意t∈(﹣1,0],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的和不大于log26,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知且,函數(shù),.
(1)指出的單調(diào)性(不要求證明);
(2)若有求的值;
(3)若,求使不等式恒成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)的一個(gè)極值點(diǎn).
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com