20.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD為菱形.
(1)若E為線段A1C1的中點,證明:BE⊥AC;
(2)若A1B1=2,A1A=4,∠ADC=120°,求三棱錐B-AD1C的體積.

分析 (1)連接BD,B1D1,通過證明AC⊥平面B1D1DB得出AC⊥BE;
(2)利用菱形的性質(zhì)計算S△ABC,于是${V_{B-A{D_1}C}}={V_{{D_1}-ABC}}$=$\frac{1}{3}$S△ABC•AA1

解答 解:(1)連接BD,B1D1,
∵四邊形ABCD是菱形,
∴AC⊥BD,
∵AA1⊥平面ABCD,BB1∥AA1,
∴BB1⊥平面ABCD,∵AC?平面ABCD,
∴BB1⊥AC,
又BB1?平面BB1D1D,BD?平面BB1D1D,BD∩BB1=B,
∴AC⊥平面BB1D1D,
∵E是A′C′的中點,四邊形A′B′C′D′是菱形,
∴E是B1D1的中點,
∴BE?平面BB1D1D,
∴AC⊥BE.
(2)∵四邊形ABCD是菱形,
∴AB=BC=A1B1=2,∠ABC=∠ADC=120°,
∴S△ABC=$\frac{1}{2}AB×BC×sin∠ABC$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴${V_{B-A{D_1}C}}={V_{{D_1}-ABC}}$=$\frac{1}{3}$S△ABC•AA1=$\frac{1}{3}×\sqrt{3}×4$=$\frac{4\sqrt{3}}{3}$.

點評 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{1}{2}$x,則該雙曲線的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2016年全國“兩會”于3月3日-3月16日在北京召開,參會代表積極參政議政,議大事謀良策,取得了一系列重要成果,某網(wǎng)站就網(wǎng)友對會議的了解情況隨機調(diào)查了1000名網(wǎng)友,結(jié)果如表:
 不很了解  了解非常了解 
50歲以上  100 212 y
 50歲以下 x188  z
若從這1000名網(wǎng)友中隨機抽取一名,抽到50名以下不很了解的概率為0.10.
(1)求x的值;
(2)若y≥193,z≥193,求“非常了解的網(wǎng)友中,50歲以下的人數(shù)不少于50歲以上的人數(shù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F1、F2為雙曲線C:$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左、右焦點,點P在C上,且∠F1PF2=$\frac{π}{3}$,則$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=( 。
A.6B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,滿足a1=b1,2a2=b2,S2+T2=13,2S3=b3
(Ⅰ)求數(shù)列{an}、{bn}通項公式;
(Ⅱ)設(shè)cn=$\frac{{2{a_n}}}{b_n}$,求數(shù)列{cn}的前n項和為Cn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在(1+x)3+(1+x)4+(1+x)5+…+(1+x)10的展開式中,含x2項的系數(shù)為( 。
A.162B.163C.164D.165

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四種說法正確的是( 。
①函數(shù)f(x)的定義域是R,則“?x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件
②命題“?x∈R,($\frac{1}{3}$)x>0”的否定是“?x∈R,($\frac{1}{3}$)x≤0”
③命題“若x=2,則x2-3x+2=0”的逆否命題是“若x2-3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù).則p∧q為真命題.
A.①②③④B.①③C.①③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=$\int_0^1$(x-x2)dx,則二項式(x2-$\frac{12a}{x}$)6展開式中含x3的項的系數(shù)為( 。
A.160B.-160C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若曲線C1和C2相交于A,B兩點,求|AB|

查看答案和解析>>

同步練習(xí)冊答案