10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{1}{2}$x,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

分析 利用雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{1}{2}$x,可得a=2b,即可求出雙曲線的離心率.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{1}{2}$x,
∴a=2b,
∴c=$\sqrt{5}$b,
∴雙曲線的離心率是e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,要熟練掌握雙曲線的簡(jiǎn)單性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將一個(gè)半徑為$\sqrt{2}$的球放在一個(gè)棱長(zhǎng)為2的無蓋的正方體上面(球面與正方體上面的四條棱相切),則球心到正方體下底面的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)關(guān)于某產(chǎn)品的明星代言費(fèi)x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計(jì)表格:
i12345合計(jì)
xi(百萬元)1.261.441.591.711.827.82
wi(百萬元)2.002.994.025.006.0320.04
yi(百萬元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐標(biāo)系中,作出銷售額y關(guān)于廣告費(fèi)x的回歸方程的散點(diǎn)圖,根據(jù)散點(diǎn)圖指出:y=a+blnx,y=c+dx3哪一個(gè)適合作銷售額y關(guān)于明星代言費(fèi)x的回歸類方程(不需要說明理由);
(2)已知這種產(chǎn)品的純收益z(百萬元)與x,y有如下關(guān)系:x=0.2y-0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關(guān)系式,試估計(jì):當(dāng)明星代言費(fèi)x在什么范圍內(nèi)取值時(shí),純收益z隨明星代言費(fèi)z的增加而增加?(以上計(jì)算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點(diǎn)第2位)
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘法估計(jì)值為:$\widehat{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}•\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知二次函數(shù)f(x)=$\frac{1}{4}$x2+1,過點(diǎn)M(a,0)作直線l1,l2與f(x)的圖象相切于A,B兩點(diǎn),則直線AB(  )
A.過定點(diǎn)(0,1)B.過定點(diǎn)(0,2)C.過定點(diǎn)(a,1)D.過定點(diǎn)(a,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=$\frac{1}{2}$x2+2xf′(2016)+2016lnx,則f′(2016)=( 。
A.2016B.-2016C.2017D.-2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且3f(x)=f′(x)-3,則4f(x)>f′(x)的解集為($\frac{ln2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在等差數(shù)列{an}中,其前n項(xiàng)和為Sn,滿足S5-S2=21,2a2-a4=-1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=a${\;}_{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)數(shù)列{an}的通項(xiàng)公式為an=n2+bn,若數(shù)列{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)b的取值范圍為( 。
A.[1,+∞)B.[-2,+∞)C.(-3,+∞)D.(-$\frac{9}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD為菱形.
(1)若E為線段A1C1的中點(diǎn),證明:BE⊥AC;
(2)若A1B1=2,A1A=4,∠ADC=120°,求三棱錐B-AD1C的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案