A. | ($-2,-\frac{3}{2}$) | B. | ($-\frac{3}{2},-1)$ | C. | ($-1,-\frac{1}{2}$) | D. | ($-\frac{1}{2},0$) |
分析 要判斷函數(shù)f(x)=x3-2x2+2的零點(diǎn)的位置,根據(jù)零點(diǎn)存在定理,則該區(qū)間兩端點(diǎn)對(duì)應(yīng)的函數(shù)值,應(yīng)異號(hào),將四個(gè)答案中各區(qū)間的端點(diǎn)依次代入函數(shù)的解析式,易判斷零點(diǎn)的位置.
解答 解:∵f(-2)=-8-8+2=-14,
f($-\frac{3}{2}$)=$-\frac{27}{8}-\frac{9}{2}+2<0$,
f(-1)=-1-2+2=-1
f($-\frac{1}{2}$)=-$\frac{1}{8}$$-\frac{1}{2}$+2=$\frac{11}{8}$,
f(0)=2.
根據(jù)零點(diǎn)存在定理,∵f(-1)•f($-\frac{1}{2}$)<0
故(-1,$-\frac{1}{2}$)內(nèi)存在零點(diǎn)
故選:C.
點(diǎn)評(píng) 本題主要考查了零點(diǎn)存在定理,即如果函數(shù)f(x)在區(qū)間(a,b)上存在一個(gè)零點(diǎn),則f(a)•f(b)<0,如果方程在某區(qū)間上有且只有一個(gè)根,可根據(jù)函數(shù)的零點(diǎn)存在定理進(jìn)行解答,但要注意該定理只適用于開(kāi)區(qū)間的情況,如果已知條件是閉區(qū)間或是半開(kāi)半閉區(qū)間,我們要分類(lèi)討論,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=($\frac{1}{3}$)x | C. | y=x${\;}^{\frac{1}{2}}$ | D. | y=x2-2x-15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{5}{4}$,5) | B. | ($\frac{5}{4}$,5] | C. | (1,5) | D. | (5,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com