17.已知α是第二象限角,且sin$α=\frac{2\sqrt{5}}{5}$,則tan($α+\frac{π}{4}$)=-$\frac{1}{3}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得cosα的值,可得tanα的值,再利用兩角和的正切公式求得tan($α+\frac{π}{4}$)的值.

解答 解:∵α是第二象限角,且sin$α=\frac{2\sqrt{5}}{5}$,則cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{\sqrt{5}}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-2,∴tan($α+\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=-$\frac{1}{3}$,
故答案為:-$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.過(guò)點(diǎn)M(1,1)且與橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1交于A,B兩點(diǎn),則被點(diǎn)M平分的弦所在的直線(xiàn)方程為x+4y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x-2),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)至少有2個(gè)不同的實(shí)數(shù)根,至多有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )
A.(1,2)B.(2,+∞)C.$({1,\root{3}{4}})$D.$[{\root{3}{4},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x3-2x2+2,則下列區(qū)間必存在零點(diǎn)的是( 。
A.($-2,-\frac{3}{2}$)B.($-\frac{3}{2},-1)$C.($-1,-\frac{1}{2}$)D.($-\frac{1}{2},0$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大$\frac{2a}{3}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,設(shè)Z=$\frac{y}{x+1}$,則Z的取值范圍( 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{1}{2}$]∪[$\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),點(diǎn)($\frac{1}{{S}_{n-1}}$,$\frac{1}{{S}_{n}}$)在f(x)=x+2的圖象上,且S1=$\frac{1}{2}$,且bn=2(1-n)an(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)f(n)=$\frac{_{n+2}}{(n+5)_{n+1}}$,求f(n)的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿(mǎn)足f(-x)=f(x),對(duì)于任意x1,x2∈[0,+∞),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0(x2≠x1),則( 。
A.f(-1)<f(-2)<f(3)B.f(3)<f(-1)<f(-2)C.f(-2)<f(-1)<f(3)D.f(3)<f(-2)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知a1,a2,a3,a4成等比數(shù)列,其公比為2,則$\frac{{a}_{3}+2{a}_{4}}{{a}_{1}+2{a}_{2}}$=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案