甲、乙兩個(gè)奧運(yùn)會(huì)主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為ξ.若可通過的信息量ξ≥6,
則可保證信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量ξ的分布列和數(shù)學(xué)期望.
(1)∵通過的信息量ξ≥6,則可保證信息通暢.
∴線路信息通暢包括三種情況,即通過的信息量分別為8,7,6,
這三種情況是互斥的,根據(jù)互斥事件的概率公式和等可能事件的概率公式得到
P(ξ=8)=
C22
C13
C37
=
3
35
,
P(ξ=7)=
C23
C12
+
C22
C12
C37
=
8
35
,
P(ξ=6)=
C12
C13
C12
+
C33
C37
=
13
35
,
∴線路信息通暢的概率為P=
3
35
+
8
35
+
13
35
=
24
35

(2)線路可通過的信息量ξ,ξ的所有可能取值為4,5,6,7,8.
P(ξ=5)=
C22
C12
+
C23
C12
C37
=
8
35
,
P(ξ=4)=
C22
C13
C37
=
3
35

P(ξ=8)=
C22
C13
C37
=
3
35
,
P(ξ=7)=
C23
C12
+
C22
C12
C37
=
8
35
,
P(ξ=6)=
C12
C13
C12
+
C33
C37
=
13
35

∴ξ的分布列為

精英家教網(wǎng)

Eξ=4×
3
35
+5×
8
35
+6×
13
35
+7×
8
35
+8×
3
35
=6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)奧運(yùn)會(huì)主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為ξ.若可通過的信息量ξ≥6,
則可保證信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩個(gè)奧運(yùn)會(huì)主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為ξ.若可通過的信息量ξ≥6,
則可保證信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年福建省福州三中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

甲、乙兩個(gè)奧運(yùn)會(huì)主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為ξ.若可通過的信息量ξ≥6,
則可保證信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測(cè)試卷09(理科)(解析版) 題型:解答題

甲、乙兩個(gè)奧運(yùn)會(huì)主辦城市之間有7條網(wǎng)線并聯(lián),這7條網(wǎng)線能通過的信息量分別為1,1,2,2,2,3,3.現(xiàn)從中任選三條網(wǎng)線,設(shè)可通過的信息量為ξ.若可通過的信息量ξ≥6,
則可保證信息通暢.
(1)求線路信息通暢的概率;
(2)求線路可通過的信息量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案