A. | (-∞,-2013) | B. | (-2013,0) | C. | (-∞,-2019) | D. | (-2019,0) |
分析 根據(jù)題意,令g(x)=x2f(x),求其求導(dǎo)可得g′(x),結(jié)合題意可得,當(dāng)x∈(-∞,0)時(shí),g′(x)<0,即函數(shù)g(x)在(-∞,0)為減函數(shù);進(jìn)而將(x+2016)2f(x+2016)-9f(-3)>0轉(zhuǎn)化為g(x+2016)>g(-3),結(jié)合函數(shù)的單調(diào)性分析可得x+2016<-3,解可得答案.
解答 解:根據(jù)題意,令g(x)=x2f(x),
其導(dǎo)數(shù)g′(x)=2xf(x)+x2f(x)=x[2f(x)+xf′(x)],
又由當(dāng)x∈(-∞,0)時(shí),2f(x)+xf′(x)>0,則有g(shù)′(x)<0,
即函數(shù)g(x)在(-∞,0)為減函數(shù);
(x+2016)2f(x+2016)-9f(-3)>0⇒(x+2016)2f(x+2016)>9f(-3)
⇒g(x+2016)>g(-3),
必有x+2016<-3;
解可得:x<-2019,
即不等式(x+2016)2f(x+2016)-9f(-3)>0的解集為(-∞,-2019);
故選:C.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,涉及函數(shù)的奇偶性與單調(diào)性的應(yīng)用,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
6 | 500 | 20 | 1300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com