(1)已知a,b,c為任意實(shí)數(shù),求證:a2+b2+c2≥ab+bc+ca;
(2)設(shè)a,b,c均為正數(shù),且a+b+c=1,求證:ab+bc+ca≤
1
3
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:(1)利用基本不等式可得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,三式相加即得結(jié)論,
(2)利用(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1,a2+b2+c2≥ab+bc+ca,即可證明.
解答: 證明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
三式相加即得a2+b2+c2≥ab+bc+ca,(6分)
(2)因?yàn)椋╝+b+c)2=a2+b2+c2+2ab+2bc+2ca=1,a2+b2+c2≥ab+bc+ca,
所以ab+bc+ca≤
1
3
(12分)
點(diǎn)評:本題考查不等式的證明,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-2<0},B={x|x>0},則集合A∩B等于( 。
A、{x|x>-2}
B、{x|0<x<1}
C、{x|x<1}
D、{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于命題p和命題q,則“p且q為真命題”的必要不充分條件是( 。
A、¬p或¬q為假命題
B、¬p且¬q為真命題
C、p或q為假命題
D、p或q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=
π
3
,AD=2,AM=1,E是AB的中點(diǎn).
(Ⅰ)求證:DE⊥NC;
(Ⅱ)在線段AM上是否存在點(diǎn)p,使二面角P-EC-D的大小為
π
6
?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+lnx.
(1)求函數(shù)f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)+mx在[1,+∞)上為單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若在[1,e]上至少存在一個(gè)x0,使得kx0-f(x0)>
2e
x0
成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an>0(n∈N*),它的前n項(xiàng)和Sn.如果{an}是一個(gè)首項(xiàng)為a,公比為q(q>0)的等比數(shù)列,且Gn=a12+a22+a32+…+an2(n∈N*),求
lim
n→∞
Sn
Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為提高生產(chǎn)效益,決定對一條生產(chǎn)線進(jìn)行升級改造,該生產(chǎn)線升級改造后的生產(chǎn)效益y萬元與升級改造的投入x(x>10)萬元之間滿足函數(shù)關(guān)系:y=mlnx-
1
100
x2+
101
50
x+ln10(其中m為常數(shù))若升級改造投入20萬元,可得到生產(chǎn)效益為35.7萬元.試求該生產(chǎn)線升級改造后獲得的最大利潤.(利潤=生產(chǎn)效益-投入)(參考數(shù)據(jù):ln2=0.7,ln5=1.6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某廣場要劃定一矩形區(qū)域ABCD,并在該區(qū)域內(nèi)開辟出三塊形狀大小相同的小矩形綠化區(qū),這三塊綠化區(qū)四周和綠化區(qū)之間分別設(shè)有2米寬和1米寬的走道,已知三塊綠化區(qū)的總面積為600平方米,求該矩形區(qū)域ABCD占地面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x
2x-1
在點(diǎn)(1,1)處的切線方程為
 

查看答案和解析>>

同步練習(xí)冊答案