【題目】下面有五個命題:
①函數(shù)的最小正周期是;
②終邊在y軸上的角的集合是;
③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有一個公共點;
④把函數(shù);
⑤在中,若,則是等腰三角形;
其中真命題的序號是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
【答案】C
【解析】
試題化簡函數(shù)的解析式求出函數(shù)的周期,可判斷①的真假;寫出指定角的集合,比照后可判斷②的真假;在同一坐標(biāo)系中畫出兩個函數(shù)的圖象,可判斷③的真假;根據(jù)函數(shù)圖象的平移法則,可判斷④的真假;由正弦定理及正切函數(shù)的性質(zhì),可判斷⑤的真假;進而得到答案.:①函數(shù) 的最小正周期是 ,故①錯誤;②終邊在y軸上的角的集合是},故②錯誤;③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有(0,0)一個公共點,故③正確;④把函數(shù) 的圖象向右平移 得到 的圖象,故④正確;⑤在△ABC中,若acosB=bcosA,即sinAcosB=sinBcosA,即tanA=tanB,即A=B,則△ABC是等腰三角形,故⑤正確;故選C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其圖象在點處切線的斜率為-3.
(1)求與關(guān)系式;
(2)求函數(shù)的單調(diào)區(qū)間(用只含有的式子表示);
(3)當(dāng)時,令,設(shè)是函數(shù)的兩個零點, 是與的等差中項,求證: (為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道一次函數(shù)、二次函數(shù)的圖像都是連續(xù)不斷的曲線,事實上,多項式函數(shù)的圖像都是如此.
(1)設(shè),且,若還有,求證:;
(2)設(shè)一個多項式函數(shù)有奇次項(),求證:總能通過只調(diào)整的系數(shù),使得調(diào)整后的多項式一定有零點;
(3)現(xiàn)有未知數(shù)為的多項式方程(其中實數(shù)待定),甲、乙兩人進行一個游戲:由甲開始交替確定中的一個數(shù)(每次只能去確定剩余還未定的數(shù)),當(dāng)甲確定最后一個數(shù)后,若方程由實數(shù)解,則乙勝,反之甲勝,問:乙有必勝的策略嗎?若有,請給出策略并證明,若無,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中, , , , 是中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格.某校有800 名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(Ⅰ)求初賽分?jǐn)?shù)在區(qū)間內(nèi)的頻率;
(Ⅱ)求獲得復(fù)賽資格的人數(shù);
(Ⅲ)據(jù)此直方圖估算學(xué)生初賽成績的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,且在y軸上截得的弦MN的長為4.
(1)求動圓圓心的軌跡C的方程;
(2)過點的直線與曲線C交于A、B兩點,線段AB的垂直平分線與x軸交于點E(,0),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com