【題目】在中, , , , 是中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;
(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)當(dāng)DP1⊥DA時(shí),CD⊥平面P1DA.由余弦定理得DC2=4,由勾股定理得DC⊥AD.即得到將△PCD沿CD折起的過程中,當(dāng)DP1⊥DA時(shí),CD⊥平面P1DA.(2)先證明在平面內(nèi)的射影必在棱上,再建系,得到兩個(gè)平面的法向量,得到兩個(gè)法向量的夾角進(jìn)而得到兩個(gè)面的夾角。
解析:
(1)將沿折起過程中, 平面成立,
證明:∵是中點(diǎn),∴,
在中,由余弦定理得,
.
∴,
∵,
∴為等腰直角三角形且,
∴, ,
∴平面.
(2)由(1)知平面, 平面,
∴平面平面,
∵為銳角三角形,∴在平面內(nèi)的射影必在棱上(如圖),
∴平面,
則是和平面所成的角,
故,
∵,
∴為等邊三角形, 為中點(diǎn),
故以為坐標(biāo)原點(diǎn),過點(diǎn)與平行的直線為軸, 所在直線為軸, 所在直線為軸建立如圖所示坐標(biāo)系.
設(shè)軸于交于點(diǎn),
∵,∴ ,
易知,
∴,
則, , , ,
, , , ,
∵平面,
∴可取平面的法向量,
設(shè)平面的法向量,平面和平面所成的角為,
則,∴得
令,則,
從而.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“周末年輕人的休閑方式與性別有關(guān)系”?
參考公式:
參考數(shù)據(jù):
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓的左頂點(diǎn)坐標(biāo)為,離心率為.
求橢圓E的方程;
過點(diǎn)作直線l交E于P、Q兩點(diǎn),試問:在x軸上是否存在一個(gè)定點(diǎn)M,使為定值?若存在,求出這個(gè)定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?(Ⅱ)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(1)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(2)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;
(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有五個(gè)命題:
①函數(shù)的最小正周期是;
②終邊在y軸上的角的集合是;
③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有一個(gè)公共點(diǎn);
④把函數(shù);
⑤在中,若,則是等腰三角形;
其中真命題的序號(hào)是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站調(diào)查2016年大學(xué)畢業(yè)生就業(yè)狀況,其中一項(xiàng)數(shù)據(jù)顯示“2016年就業(yè)率最高學(xué)科”為管理學(xué),高達(dá)(數(shù)據(jù)來源于網(wǎng)絡(luò),僅供參考).為了解高三學(xué)生對(duì)“管理學(xué)”的興趣程度,某校學(xué)生社團(tuán)在高校高三文科班進(jìn)行了問卷調(diào)查,問卷共100道選擇題,每題1分,總分100分,社團(tuán)隨機(jī)抽取了100名學(xué)生的問卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),得到頻率分布表如下:
組號(hào) | 分組 | 男生 | 女生 | 頻數(shù) | 頻率 |
第一組 | 3 | 2 | 5 | 0.05 | |
第二組 | 17 | ||||
第三組 | 20 | 10 | 30 | 0.3 | |
第四組 | 6 | 18 | 24 | 0.24 | |
第五組 | 4 | 12 | 16 | 0.16 | |
合計(jì) | 50 | 50 | 100 | 1 |
(1)求頻率分布表中, , 的值;
(2)若將得分不低于60分的稱為“管理學(xué)意向”學(xué)生,將低于60分的稱為“非管理學(xué)意向”學(xué)生,根據(jù)條件完成下面列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為是否為“管理學(xué)意向”與性別有關(guān)?
非管理學(xué)意向 | 管理學(xué)意向 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(3)心理咨詢師認(rèn)為得分低于20分的學(xué)生可能“選擇困難”,要從“選擇困難”的5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行心理輔導(dǎo),求恰好有1名男生,1名女生被選中的概率.
參考公式: ,其中.
參考臨界值:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中).
(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(2)若恒成立,求的取值范圍;
(3)設(shè),且函數(shù)有極大值點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆四川省綿陽南山中學(xué)高三二診】已知橢圓的焦距為,且經(jīng)過點(diǎn).過點(diǎn)的斜率為的直線與橢圓交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),直線交軸于點(diǎn).
(1)求的取值范圍;
(2)試問: 是否為定值?若是,求出定值;否則,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com