1.向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$$•\overrightarrow$=-6,|$\overrightarrow$|=3,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影是-2.

分析 根據(jù)平面向量投影的定義,計算即可.

解答 解:$\overrightarrow{a}$$•\overrightarrow$=-6,|$\overrightarrow$|=3,
則$\overrightarrow{a}$在$\overrightarrow$方向上的投影是
|$\overrightarrow{a}$|cosθ=|$\overrightarrow{a}$|×$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|×|\overrightarrow|}$=$\frac{-6}{3}$=-2.
故答案為:-2.

點評 本題考查了平面向量投影的定義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知復(fù)數(shù)),則“”是“為純虛數(shù)”的( )

A.充分不必要條件

B.必要不充分條件

C.既不充分也不必要條件

D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆寧夏高三上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知函數(shù)定義域是,則的定義域( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x3-2ax2+a在(a-1,a+$\frac{1}{2}$)上有最大值,則正數(shù)a的取值范圍為 (  )
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{2}$]D.($\frac{1}{2},\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體中,最大側(cè)面的面積為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,若輸入A的值為2,則輸出的i值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了解某地區(qū)居民用水情況,通過抽樣,獲得了100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,1),[1,2)…,[4,5]分成5組,制成了如圖所示的頻率分布直方圖.
(1)估計這100位居民月均用水量的樣本平均數(shù)x和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點值作代表,保留1位小數(shù));
(2)若以樣本頻率作為概率,從該地區(qū)居民(人數(shù)很多)中任選3人,記月均用水量小于2噸的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,從甲地到乙地有2條路,從乙地到丁地有3條路;從甲地到丙地有4 條路,從丙地到丁地有2條路,則從甲地到丁地不同的路有(  )
A.11條B.14條C.16條D.48條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的一條直徑的兩個端點的坐標(biāo)為O(0,0),D(0,-2).
(1)過點P(1,-3)作圓C的兩條切線,這兩條切線分別與x軸交于A、B兩點,求|AB|;
(2)點Q為直線x+y一m=0(m>0)上一動點,且圓C上一點到此直線的最短距離為4$\sqrt{2}$-1,求$\overrightarrow{QO}$•$\overrightarrow{QD}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案