11.若二項式(2x+$\frac{a}{x}$)7的展開式中$\frac{1}{{x}^{3}}$的系數(shù)是84,則實數(shù)a=1.

分析 利用二項式定理的展開式的通項公式,通過x冪指數(shù)為-3,求出a即可.

解答 解:二項式(2x+$\frac{a}{x}$)7的展開式即($\frac{a}{x}$+2x)7的展開式中x-3項的系數(shù)為84,
所以Tr+1=${C}_{7}^{r}•{2}^{r}•{a}^{7-r}•{x}^{2r-7}$,
令-7+2r=-3,解得r=2,
代入得:${C}_{7}^{2}{•a}^{5}•{2}^{2}$=84,
解得a=1,
故答案為:1

點評 本題考查二項式定理的應(yīng)用,特定項的求法,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-1,-2),則雙曲線的焦距為( 。
A.$6\sqrt{5}$B.$3\sqrt{5}$C.$6\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],若f(x1)>f(x2),則下列不等式一定成立的是( 。
A.x12>x22B.x1+x2>0C.x1>x2D.x12<x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)y=f(x)是R上的偶函數(shù),對?x∈R,都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2],且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,給出下列命題:
(1)f(2)=0;
(2)直線x=-4是函數(shù)y=f(x)圖象的一條對稱軸;
(3)函數(shù)y=f(x)在[-4,4]上有四個零點;
(4)f(2015)=f(1).
其中所有正確命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=2x3-3mx2+6x在區(qū)間(2,+∞)上為增函數(shù),則實數(shù)m的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),公比是q,且滿足:a1=2,b1=1,b2+S2=8,S2=(b2+1)q
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2<4},B={x|-1≤x≤4},則A∪B=( 。
A.{x|-1≤x<2}B.{x|-2<x≤4}C.{x|-1≤x<4}D.{x|-4<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以平面直角坐標(biāo)系的原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,則曲線$\{\left.\begin{array}{l}{x=\sqrt{7}cosφ}\\{y=\sqrt{7}sinφ}\end{array}\right.$(φ為參數(shù),φ∈R)上的點到曲線ρ(cosθ+sinθ)=4(ρ,θ∈R)的最短距離是2$\sqrt{2}-\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x+$\frac{{3{a^2}}}{x}$-2alnx在區(qū)間(1,2)上單調(diào)遞增,則實數(shù)a的取值范圍.
A.[-$\frac{1}{3}$,1]B.[-1,$\frac{1}{3}$]C.[$\frac{1}{3}$.$\frac{2}{3}$]D.[$\frac{1}{3}$,1](

查看答案和解析>>

同步練習(xí)冊答案