分析 由函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,我們令x=-2,可得f(-2)=f(2)=0,進而得到f(x+4)=f(x)恒成立,再由當(dāng)x1,x2∈[0,2]且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,我們易得函數(shù)在區(qū)間[0,2]單調(diào)遞減,由此我們畫出函數(shù)的簡圖,然后對題目中的四個結(jié)論逐一進行分析,即可得到答案.
解答 解:∵對任意x∈R,都有f(x+4)=f(x)+f(2)成立
當(dāng)x=-2,可得f(-2)=0,
又∵函數(shù)y=f(x)是R上的偶函數(shù)
∴f(-2)=f(2)=0,
又由當(dāng)x1,x2∈[0,2]且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
∴函數(shù)在區(qū)間[0,2]單調(diào)遞減
故函數(shù)f(x)的簡圖如下圖所示:
由圖可知:①正確,②正確,③錯誤,④正確
故答案:①②④.
點評 本題考查的知識點是函數(shù)的圖象,函數(shù)的奇偶性,函數(shù)的周期性,函數(shù)的零點,解答的關(guān)鍵是根據(jù)已知,判斷函數(shù)的性質(zhì),并畫出函數(shù)的草圖,結(jié)合草圖分析題目中相關(guān)結(jié)論的正誤.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{29}{14}$ | B. | -$\frac{29}{14}$ | C. | $\frac{29}{7}$ | D. | -$\frac{29}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com