A. | (-∞,2) | B. | (-∞,2] | C. | (-∞,$\frac{5}{2}$) | D. | (-∞,$\frac{5}{2}$] |
分析 先求f′(x)=6x2-6mx+6,根據(jù)題意可知f′(x)≥0在(2,+∞)上恒成立,可設(shè)g(x)=6x2-6mx+6,所以討論△的取值,從而判斷g(x)≥0是否在(2,+∞)上恒成立:△≤0時(shí),容易求出-2≤m≤2,顯然滿足g(x)≥0;△<0時(shí),m需要滿足$\left\{\begin{array}{l}{\frac{m}{2}<2}\\{g(2)≥0}\end{array}\right.$,這樣求出m的范圍,和前面求出的m范圍求并集即可.
解答 解:f′(x)=6x2-6mx+6;
由已知條件知x∈(2,+∞)時(shí),f′(x)≥0恒成立;
設(shè)g(x)=6x2-6mx+6,則g(x)≥0在(2,+∞)上恒成立;
∴(1)若△=36(m2-4)≤0,即-2≤m≤2,滿足g(x)≥0在(2,+∞)上恒成立;
(2)若△=36(m2-4)>0,即m<-2,或m>2,則需:$\left\{\begin{array}{l}{\frac{m}{2}<2}\\{g(2)=30-12m≥0}\end{array}\right.$;
解得$m≤\frac{5}{2}$;
∴$m<-2,或2<m≤\frac{5}{2}$;
∴綜上得$m≤\frac{5}{2}$;
∴實(shí)數(shù)m的取值范圍是(-∞,$\frac{5}{2}$].
故選D.
點(diǎn)評(píng) 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號(hào)的關(guān)系,熟練掌握二次函數(shù)的圖象,以及判別式△的取值情況和二次函數(shù)取值的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com