【題目】定義在上的函數(shù)滿足:①對一切恒有;②對一切恒有;③當(dāng)時(shí),,且;④若對一切(其中),不等式恒成立.
(1)求的值;
(2)證明:函數(shù)是上的遞增函數(shù);
(3)求實(shí)數(shù)的取值范圍.
【答案】(1)4,8(2)證明見解析(3)
【解析】
1)用賦值法令求解.
(2)利用單調(diào)性的定義證明,任取,由 ,則有,再由條件當(dāng)時(shí),
得到結(jié)論.
(3)先利用將轉(zhuǎn)化為,再將恒成立,利用函數(shù)是上的遞增函數(shù),轉(zhuǎn)化為恒成立求解.
(1)令 所以
所以
(2)因?yàn)?/span>
任取
因?yàn)楫?dāng)時(shí),
所以
所以,
所以函數(shù)是上的遞增函數(shù),
(3)因?yàn)?/span>
又因?yàn)?/span>恒成立
且函數(shù)是上的遞增函數(shù),
所以,(其中)恒成立
所以若對一切(其中),恒成立.
當(dāng) ,即時(shí)
所以,
解得
當(dāng)時(shí),
解得
當(dāng),
所以且
解得
綜上:實(shí)數(shù)的取值范圍
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用國慶節(jié)進(jìn)行社會(huì)實(shí)踐,對歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳組的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | P | |
第三組 | 100 | 0.5 | |
第四組 | a | 0.4 | |
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖,并求n,a,p的值;
(2)求年齡段人數(shù)的中位數(shù)和眾數(shù);(直接寫出結(jié)果即可)
(3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤與投資單位:萬元)
(1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶朝天門批發(fā)市場某服裝店試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于成本的40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù),且時(shí),;時(shí),.
(1)求一次函數(shù)的表達(dá)式;
(2)若該服裝店獲得利潤為W元,試寫出利潤與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),服裝店可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和,已知,.
(1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;
(2)設(shè),又對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)已知為正整數(shù)且,數(shù)列共有項(xiàng),設(shè),又,求的所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定平面上的點(diǎn)集,中任三點(diǎn)均不共線。將中所有的點(diǎn)任意分成83組,使得每組至少有3個(gè)點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個(gè)圖案。不同的分組方式得到不同的圖案。將圖案中所含的以中的點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)記為。
(1)求的最小值;
(2)設(shè)是使的一個(gè)圖案,若將中的線段(指以的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色。證明存在一個(gè)染色方案,使染色后不含以的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的各棱長均為2,側(cè)面 底面,側(cè)棱與底面所成的角為.
(Ⅰ)求直線與底面所成的角;
(Ⅱ)在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com