13.為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組頻數(shù)頻率
50.5~60.560.08
60.5~70.50.16
70.5~80.515
80.5~90.5240.32
90.5~100.5
合計751.00
(1)填充頻率分布表的空格;
(2)補全頻率分布直方圖;
(3)根據(jù)頻率分布直方圖求此次“環(huán)保知識競賽”的平均分為多少?

分析 (1)根據(jù)頻率=$\frac{頻數(shù)}{樣本容量}$,分別計算即可,
(2)由統(tǒng)計表補全直方圖即可,
(3)利用組中值乘以對應的頻率即可估計環(huán)保知識競賽”的平均分.

解答 解:(1)

分組頻數(shù)頻率
50.5~60.560.08
60.5~70.5120.16
70.5~80.5150.20
80.5~90.5240.32
90.5~100.5180.24
合計751.00
(2)如圖所示:

(3)$\overline x=55.5×0.08+65.5×0.16+75.5×0.20+85.5×0.32+95.5×0.24=80.30$
∴此次“環(huán)保知識競賽”的平均分為80.30(分).

點評 本題考查了用樣本頻率分布估計總體頻率分布,考查了頻率分布直方圖,考查了學生的讀圖能力和計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知等比數(shù)列{an}滿足a1=2,a1+a3+a5=14,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$=$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點F(1,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)點P在橢圓C上,且在第一象限內(nèi),直線PQ與圓O:x2+y2=b2相切于點M,且OP⊥OQ,求點Q的縱坐標t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=$\frac{1}{2}$-$\frac{1}{2}{a_n}$.
(1)求數(shù)列{an}的通項公式;
(2)設f(x)=log3x,bn=anf(an),求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.曲線f(x)=ax3+2x-1在點(1,f(1))處的切線過點(3,4),則a=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.某城市理論預測2000年到2004年人口總數(shù)與年份的關系如表所示,線性回歸方程為$\hat y$=3.2x+3.6,則t=11.
年份200x(年)01234
人口數(shù) y (十萬)578t19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一船沿北偏西45°方向航行,看見正東方向有兩個燈塔A,B,AB=10海里,航行半小時后,看見一燈塔在船的南偏東60°,另一燈塔在船的南偏東75°,則這艘船的速度是每小時( 。
A.5海里B.5$\sqrt{2}$海里C.10海里D.10$\sqrt{2}$海里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若(4$\sqrt{x}$+$\frac{1}{x}}$)n的展開式中各項系數(shù)之和為125,則展開式的常數(shù)項為48.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱)76656
收益y(單位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求預計收益是多少元?
(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201-500名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金.甲、乙兩名學生獲一等獎學金的概率均為$\frac{2}{5}$,獲二等獎學金的概率均為$\frac{1}{3}$,不獲得獎學金的概率均為$\frac{4}{15}$.
(1)在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;
(2)已知甲、乙兩名學生獲得哪個等級的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X的分布列及數(shù)學期望
附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

同步練習冊答案