18.設復數(shù)z1,z2在復平面內(nèi)的對應點關于實軸對稱,z1=2+i,則z1z2=(  )
A.3B.5C.-4+iD.4+i

分析 復數(shù)z1,z2在復平面內(nèi)的對應點關于實軸對稱,z1=2+i,可得z2=2-i.利用復數(shù)的運算法則即可得出.

解答 解:復數(shù)z1,z2在復平面內(nèi)的對應點關于實軸對稱,z1=2+i,∴z2=2-i.
則z1z2=(2+i)(2-i)=4+1=5.
故選:B.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的頂點到直線l:y=x的距離分別為$\frac{{\sqrt{6}}}{2},\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C1的離心率;
(2)過圓O:x2+y2=4上任意一點P作橢圓C1的兩條切線PM和PN分別與圓交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)設點E為PD的中點,求證:CE∥平面PAB;
(2)線段PD上是否存在一點N,使得直線CN與平面PAC所成的角θ的正弦值為$\frac{\sqrt{15}}{5}$?若存在,試確定點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知正數(shù)數(shù)列{an}的前n項和Sn滿足:Sn和2的等比中項等于an和2的等差中項,則a1=2,Sn=2n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=e-|lnx|-|2-x|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對?x1,x2∈[1,e],總有|f(x1)-f(x2)≤3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.根據(jù)微信同程旅游的調(diào)查統(tǒng)計顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進行促銷,具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$α∈R,sinα+2cosα=\frac{{\sqrt{10}}}{2}$,則tan2α=( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某校高一1班、2班分別有10人和8人騎自行車上學,他們每天騎行路程(單位:千米)的莖葉圖如圖所示:則1班10人每天騎行路程的極差和2班8人每天騎行路程的中位數(shù)分別是(  )
A.14,9.5B.9,9C.9,10D.14,9

查看答案和解析>>

同步練習冊答案