8.某校高一1班、2班分別有10人和8人騎自行車上學(xué),他們每天騎行路程(單位:千米)的莖葉圖如圖所示:則1班10人每天騎行路程的極差和2班8人每天騎行路程的中位數(shù)分別是( 。
A.14,9.5B.9,9C.9,10D.14,9

分析 根據(jù)莖葉圖中的數(shù)據(jù),計(jì)算1班的極差和2班的中位數(shù)即可.

解答 解:根據(jù)莖葉圖中數(shù)據(jù),計(jì)算1班的極差為22-8=14;
2班的中位數(shù)為$\frac{9+10}{2}$=9.5.
故選:A.

點(diǎn)評(píng) 本題考查了利用莖葉圖求極差和中位數(shù)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=2+i,則z1z2=( 。
A.3B.5C.-4+iD.4+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知在銳角△ABC中,角A,B,C的對(duì)邊分別是a,b,c,2asinB=$\sqrt{3}$b,b=2,c=3,AD是角A的平分線,D在BC上,則BD=$\frac{{3\sqrt{7}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=|$\overrightarrow a$+$\overrightarrow b$|=2,|$\overrightarrow b$|=1,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$,-1),則$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,則|$\overrightarrow{BD}$|等于( 。
A.2B.4C.6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列四個(gè)命題:
①若x∈A∩B,則x∈A或x∈B;
②?x∈(2+∞),都有x2>2x;
③若a,b是實(shí)數(shù),則a>b是a2>b2的充分不必要條件;
④“?x0∈R,x02+2>3x0”的否定是“?x∈R,x2+2≤3x”;
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知矩陣M=$[\begin{array}{l}{1}&{a}\\&{1}\end{array}]$,N=$[\begin{array}{l}{c}&{2}\\{0}&pj9jq2w\end{array}]$,若MN=$[\begin{array}{l}{2}&{4}\\{-2}&{0}\end{array}]$.求實(shí)數(shù)a,b,c,d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩個(gè)集合A,B,滿足B⊆A.若對(duì)任意的x∈A,存在ai,aj∈B(i≠j),使得x=λ1ai2aj(λ1,λ2∈{-1,0,1}),則稱B為A的一個(gè)基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個(gè)數(shù)的最小值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案