16.已知函數(shù)f(x)=$\frac{lnx+ax+1}{x}$.
(1)若對(duì)任意x>0,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1<x2),證明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

分析 (1)求出導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,得出函數(shù)的最值,進(jìn)而求出a的范圍;
(2)求出導(dǎo)函數(shù),根據(jù)極值點(diǎn)判斷函數(shù)的零點(diǎn)位置,對(duì)零點(diǎn)分類(lèi)討論,構(gòu)造函數(shù),利用放縮法,均值定理證明結(jié)論成立.

解答 解:(1)f(x)=$\frac{lnx+ax+1}{x}$=$\frac{lnx}{x}$+a+$\frac{1}{x}$.
f''(x)=-$\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,l)上遞增,(1,+∞)上遞減,
∴f(x)≤f(1)=a+1,
∴a+1<0,∴a<-1;
(2)證明:由(1)知,兩個(gè)不同零點(diǎn)x1∈(0,1),x2∈(1,+∞),
若x2∈(1,2),則2-x2∈(0,1),
設(shè)g(x)=f(x)-f(2-x)=$\frac{lnx}{x}$+$\frac{1}{x}$-$\frac{ln(2-x)}{2-x}$-$\frac{1}{2-x}$,
則當(dāng)x∈(0,1)時(shí),
g'(x)=-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{(2-x)}^{2}}$>-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{x}^{2}}$=-$\frac{ln({-(x-1)}^{2}+1]}{{x}^{2}}$>0,
∴g(x)在(0,1)上遞增,
∴g(x)<g(1)=0,
∴f(x)<f(2-x),
∴f(2-x1)>f(x1)=f(x2),
∴(2-x1)<x2,∴2<x1+x2,
若x2∈(2,+∞),可知2<x1+x2,顯然成立,
又$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+x2≥2$\sqrt{\frac{{{x}_{1}}^{2}}{{x}_{2}}{•x}_{2}}$=2x1,同理可得$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1≥2x2,
以上兩式相加得:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$+x1+x2≥2(x1+x2),
故:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$≥(x1+x2)>2.

點(diǎn)評(píng) 本題考查了導(dǎo)函數(shù)的應(yīng)用,最值問(wèn)題的轉(zhuǎn)化思想,難點(diǎn)是對(duì)參數(shù)的分類(lèi)討論和均值定理的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=f(x)在[0,+∞)上是遞減函數(shù),則f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:?x∈(0,+∞),sinx=x+$\frac{1}{x}$,命題q:?x∈R,πx<1,則下列為真命題的是( 。
A.p∧(?q)B.(?p)∧(?q)C.(?p)∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}y-x≤0\\ x≤2\\ y≥\frac{1}{2}\end{array}\right.$,則$2x+\frac{1}{y}$的最小值為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.集合A={1,2,a},B={2,3},若B?A,則實(shí)數(shù)a的值是( 。
A.1B.2C.3D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某公司對(duì)新招聘的40名業(yè)務(wù)人員迸行業(yè)務(wù)培訓(xùn),現(xiàn)按新業(yè)務(wù)員的年齡(單位:歲)進(jìn)行分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)培訓(xùn)中有一個(gè)傳球活動(dòng):音樂(lè)響起,按特定順序開(kāi)始第1次傳一個(gè)球,音樂(lè)停時(shí),球在誰(shuí)手,誰(shuí)就表演一個(gè)節(jié)目,表演完畢后,從表演者開(kāi)始下一次傳球,如此進(jìn)行3次,若以頻率為概率,且停音樂(lè)是隨機(jī)的,求至少有2次表演者的年齡在[20,30)的概率;
(2)培訓(xùn)前決定在年齡在[35,45]的新業(yè)務(wù)員中任意選出3名小組長(zhǎng),設(shè)年齡在[40,45]中選取的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.$若f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{1+{x^2},x<0}\end{array}}\right.$,則f′(1)•f′(-1)=( 。
A.-2B.-3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某工廠(chǎng)為制定下一階段生產(chǎn)某種產(chǎn)品的方案,工廠(chǎng)技術(shù)部門(mén)開(kāi)展了兩項(xiàng)統(tǒng)計(jì),其一是對(duì)該廠(chǎng)48名師傅生產(chǎn)的產(chǎn)品精度情況進(jìn)行了調(diào)查,得到如下的2×2列聯(lián)表1(單位:個(gè));其二是對(duì)某師傅加工零件個(gè)數(shù)n1(單位:個(gè))和加工時(shí)間t1(單位:小時(shí),i-1,2,…6)作了6次試驗(yàn),并對(duì)獲得的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值如表2.
表1:48名師傅生產(chǎn)的產(chǎn)品精度統(tǒng)計(jì)表(單位:個(gè))
類(lèi)別達(dá)到精品級(jí)未達(dá)到精品級(jí)總計(jì)
高級(jí)技工22628
中級(jí)技工101020
總計(jì)321648
表2:
 $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$  $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$$\sum_{i=1}^{6}{n}_{i}$ 2$\sum_{i=1}^{6}{t}_{i}$ 2 $\sum_{i=1}^{6}{n}_{i}{t}_{i}$$\sum_{i=1}^{6}$(ni-$\overline{n}$)2 $\sum_{i=1}^{6}$(ti-$\overline{t}$)2  $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) 
4.54.125139109.562112.7517.57.46811.375
(1)判斷是否有95%的把握人物產(chǎn)品達(dá)到精品級(jí)與師傅的職稱(chēng)有關(guān)?說(shuō)明你的理由;
(2)根據(jù)散點(diǎn)圖判斷t與n是否具有線(xiàn)性相關(guān)關(guān)系?若具有,依據(jù)表中數(shù)據(jù)求出t關(guān)于n的線(xiàn)性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并預(yù)測(cè)該師傅加工10個(gè)零件需要多少時(shí)間?
附:(1)參考臨界值有:
參考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸線(xiàn)$\widehat{y}$=$\widehat$x+$\widehat{a}$的斜率和截距的最小二乘估計(jì)分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案