6.已知函數(shù)y=f(x)在[0,+∞)上是遞減函數(shù),則f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

分析 由題意利用函數(shù)的單調(diào)性的定義,得出結(jié)論.

解答 解:∵函數(shù)y=f(x)在[0,+∞)上是遞減函數(shù),
a2-a+1=${(a-\frac{1}{2})}^{2}$+$\frac{3}{4}$≥$\frac{3}{4}$,則f($\frac{3}{4}$)≥f(a2-a+1),
故答案為:≥.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ=60°,則向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.曲線y=x(3lnx+1)在點(diǎn)(1,1)處的切線的斜率為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.?dāng)?shù)列{an}滿足an+1(an-1-an)=an-1(an-an+1),若a1=2,a2=1,則a20=( 。
A.$\frac{1}{{{2^{10}}}}$B.$\frac{1}{2^9}$C.$\frac{2}{21}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知A(x1,y1),B(x2,y2)是拋物線C:x2=2py(p>0)上不同兩點(diǎn).
(1)設(shè)直線l:y=$\frac{p}{4}$與y軸交于點(diǎn)M,若A,B兩點(diǎn)所在的直線方程為y=x-1,且直線l:y=$\frac{p}{4}$恰好平分∠AFB,求拋物線C的標(biāo)準(zhǔn)方程.
(2)若直線AB與x軸交于點(diǎn)P,與y軸的正半軸交于點(diǎn)Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直線AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)當(dāng)a=2 時(shí),求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)討論函數(shù)F(x)=f(x)-g(x) 的單調(diào)性;
(3)若f(x)•g(x)≤0 在定義域內(nèi)恒成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2n2-n,則數(shù)列{a2n}的前10項(xiàng)和等于( 。
A.380B.390C.400D.410

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}}\right.$,則z=3x+2y的最大值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{lnx+ax+1}{x}$.
(1)若對(duì)任意x>0,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1<x2),證明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

查看答案和解析>>

同步練習(xí)冊(cè)答案