10.某工廠為制定下一階段生產(chǎn)某種產(chǎn)品的方案,工廠技術(shù)部門開展了兩項統(tǒng)計,其一是對該廠48名師傅生產(chǎn)的產(chǎn)品精度情況進行了調(diào)查,得到如下的2×2列聯(lián)表1(單位:個);其二是對某師傅加工零件個數(shù)n1(單位:個)和加工時間t1(單位:小時,i-1,2,…6)作了6次試驗,并對獲得的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值如表2.
表1:48名師傅生產(chǎn)的產(chǎn)品精度統(tǒng)計表(單位:個)
類別達到精品級未達到精品級總計
高級技工22628
中級技工101020
總計321648
表2:
 $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$  $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$$\sum_{i=1}^{6}{n}_{i}$ 2$\sum_{i=1}^{6}{t}_{i}$ 2 $\sum_{i=1}^{6}{n}_{i}{t}_{i}$$\sum_{i=1}^{6}$(ni-$\overline{n}$)2 $\sum_{i=1}^{6}$(ti-$\overline{t}$)2  $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) 
4.54.125139109.562112.7517.57.46811.375
(1)判斷是否有95%的把握人物產(chǎn)品達到精品級與師傅的職稱有關(guān)?說明你的理由;
(2)根據(jù)散點圖判斷t與n是否具有線性相關(guān)關(guān)系?若具有,依據(jù)表中數(shù)據(jù)求出t關(guān)于n的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并預測該師傅加工10個零件需要多少時間?
附:(1)參考臨界值有:
參考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸線$\widehat{y}$=$\widehat$x+$\widehat{a}$的斜率和截距的最小二乘估計分別為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)根據(jù)列聯(lián)表,計算觀測值K2,對照臨界值得出結(jié)論;
(2)根據(jù)散點圖中各點分布特征,判斷兩個變量是否有線性相關(guān)關(guān)系;計算平均數(shù)與回歸系數(shù),寫出回歸方程,利用回歸方差計算n=10時$\stackrel{∧}{t}$的值.

解答 解:(1)根據(jù)列聯(lián)表,計算K2=$\frac{48{×(22×10-10×6)}^{2}}{32×16×28×20}$≈4.286>3.841,
對照臨界值表,得出有95%的把握認為產(chǎn)品達到精品級與師傅的職稱有關(guān);
(2)根據(jù)散點圖中各點成帶狀分布,得出兩個變量具有線性相關(guān)關(guān)系;
計算$\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}$ni=4.5,$\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}$ti=4.125;
回歸系數(shù)為$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{11.375}{17.5}$=0.65,
$\widehat{a}$=$\overline{t}$-$\widehat$$\overline{n}$=4.125-0.65×4.5=1.2,
∴t關(guān)于n的線性回歸方程是$\stackrel{∧}{t}$=0.65n+1.2;
當n=10時,$\stackrel{∧}{t}$=0.65×10+1.2=7.7,
∴預測加工10個零件需要7.7小時.

點評 本題考查了獨立性檢驗與線性回歸方程的應用問題,也考查了推理與計算能力,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{lnx+ax+1}{x}$.
(1)若對任意x>0,f(x)<0恒成立,求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1<x2),證明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,在邊長為2的菱形ABCD中,∠BAD=60°,E為BC中點,則$\overrightarrow{AE}•\overrightarrow{BD}$=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為${F_1}{、_{_1}}{F_2}$,點B是雙曲線的右頂點,A是其虛軸的端點,如圖所示.若${S_{△AB{F_2}}}=\frac{1}{4}{S_{△AOB}}$,則雙曲線的兩條漸近線的夾角(銳角或直角)的正切值為( 。
A.$\frac{5}{4}$B.$\frac{24}{7}$C.$-\frac{21}{24}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知定點A(-4,0)及橢圓C:x2+3y2=6,直線MN經(jīng)過橢圓C的右焦點,當M、N在橢圓C上運動時,△MNA的面積的最大值為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.點P是曲線y=x2-ln x上任意一點,則點P到直線4x+4y+1=0的最短距離是$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}ln2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=lnx-x+\frac{1}{x}$,若a=f(3),b=f(π),c=f(5),則( 。
A.c<b<aB.c<a<bC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知F是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,過點F作斜率為2的直線l使它與圓x2+y2=b2相切,則橢圓離心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-2λ)•($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-$\frac{3}{2}$λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍是$(-∞,\frac{4}{5})$.

查看答案和解析>>

同步練習冊答案