19.直線(xiàn)x-y=0被圓x2+y2=1截得的弦長(zhǎng)為(  )
A.$\sqrt{2}$B.1C.4D.2

分析 由圓的方程可得圓心坐標(biāo)和半徑,圓心在直線(xiàn)x-y=0上,即可求出弦長(zhǎng).

解答 解:圓x2+y2=1的圓心O(0,0),半徑等于1,圓心在直線(xiàn)x-y=0上,
故直線(xiàn)x-y=0被圓x2+y2=1截得的弦長(zhǎng)為2,
故選D.

點(diǎn)評(píng) 本題主要考查直線(xiàn)和圓的位置關(guān)系,正確確定圓心在直線(xiàn)x-y=0上是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-a-1,若f(-1)=$\frac{3}{4}$,則a等于(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ為銳角,則cos($\frac{π}{4}$-θ)的值為(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線(xiàn)方程為(2+2m)x+(1-m)y+4=0.
(1)該直線(xiàn)是否過(guò)定點(diǎn)?如果存在,請(qǐng)求出該點(diǎn)坐標(biāo),如果不存在,說(shuō)明你的理由;
(2)當(dāng)m為何值時(shí),點(diǎn)Q(3,4)到直線(xiàn)的距離最大,最大值為多少?
(3)當(dāng)m在什么范圍時(shí),該直線(xiàn)與兩坐標(biāo)軸負(fù)半軸均相交?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則cos(a2+a12)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.保險(xiǎn)柜的密碼由0,1,2,3,4,5,6,7,8,9中的四個(gè)數(shù)字組成,假設(shè)一個(gè)人記不清自己的保險(xiǎn)柜密碼,只記得密碼全部由奇數(shù)組成且按照遞增順序排列,則最多輸入2次就能開(kāi)鎖的頻率是(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x+y-4≤0}\\{x-1≥0}\\{y-1≥0}\end{array}\right.$,則$\frac{x+y}{x}$的取值范圍是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.72B.76C.80D.88

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2.記g(x)為f(x)的導(dǎo)函數(shù).
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)垂直于直線(xiàn)x+y+3=0,求a的值;
(2)討論g(x)=0的解的個(gè)數(shù);
(3)證明:對(duì)任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案