12.已知命題p:函數(shù)y=2-ax+1的圖象恒過定點(diǎn)(1,2);命題q:若函數(shù)y=f(x-1)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

分析 由函數(shù)的翻折和平移,得到命題p假,則¬p真;由函數(shù)的奇偶性,對軸稱和平移得到命題q假,則命題¬q真,由此能求出結(jié)果.

解答 解:函數(shù)y=2-ax+1的圖象可看作把y=ax的圖象先沿軸反折,再左移1各單位,最后向上平移2各單位得到,
而y=ax的圖象恒過(0,1),所以函數(shù)y=2-ax+1恒過(-1,1)點(diǎn),所以命題p假,則¬p真.
函數(shù)f(x-1)為偶函數(shù),則其對稱軸為x=0,而函數(shù)f(x)的圖象是把y=f(x-1)向左平移了1各單位,
所以f(x)的圖象關(guān)于直線x=-1對稱,所以命題q假,則命題¬q真.
綜上可知,命題p∧¬q為真命題.
故選:D.

點(diǎn)評 本題考查命題的真假判斷,是中檔題,解題時要認(rèn)真審題,注意得復(fù)合命題的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上,F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),以線段F1F2為直徑的圓恰好過點(diǎn)P,且sin∠PF1F2=$\frac{3}{5}$,則雙曲線的離心率是(  )
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算下列各排列數(shù):
(1)a,b,c,d,e中取出4個元素的排列中,a不在首位的所有排列;
(2)a,b,c,d,e中取出4個元素的排列中,a不在首位且b不在末位的所有排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x、y滿足$\sqrt{x+3y}$$•\sqrt{x-3y}$=3,則x-|y|的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax2-a+2(a∈R,a為常數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對任意的a∈(-2,0],不等式mea+f(x0)>0(其中e為自然對數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$a={(\frac{1}{5})^{-\frac{1}{2}}},b={log_5}\frac{1}{3},c={log_{\frac{1}{2}}}\frac{1}{3}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=m-|2x+1|-|2x-3|在R上存在零點(diǎn).
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m為最小值時,若$\frac{1}{m\sqrt{a}}$+$\frac{1}{2m\sqrt}$+$\frac{1}{3m\sqrt{c}}$=1,求證:$\frac{1}{9}$$\sqrt{a}$+$\frac{2}{9}$$\sqrt$+$\frac{1}{3}$$\sqrt{c}$≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)M為平面上以A(4,1),B(-1,-6),C(-3,2)三點(diǎn)為頂點(diǎn)的三角形區(qū)域(包括內(nèi)部和邊界),當(dāng)點(diǎn)(x,y)在M上變化時,z=4x-3y的取值范圍是( 。
A.[-18,13]B.[0,14]C.[13,14]D.[-18,14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某籃球隊(duì)對籃球運(yùn)動員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對籃球運(yùn)動員在投籃命中時,運(yùn)動員在籃筐中心的水平距離這項(xiàng)指標(biāo),對某運(yùn)動員進(jìn)行了若干場次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運(yùn)動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)若從該運(yùn)動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運(yùn)動員投籃命中時,他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績中隨機(jī)抽取2次.規(guī)定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記1分,否則記0分.求該運(yùn)動員得1分的概率.

查看答案和解析>>

同步練習(xí)冊答案