分析 由題意作出此分段函數(shù)的圖象,由圖象研究該函數(shù)的性質,依據(jù)這些性質判斷四個命題的真假,此函數(shù)取自變量相同時函數(shù)值小的那一個,由此可順利作出函數(shù)圖象.
解答 解:由題意函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\end{array}\right.$,
畫出f(x)在x∈[0,2π]上的圖象.
由圖象知,函數(shù)f(x)的最小正周期為2π,
在x=π+2kπ(k∈Z)和x=$\frac{3π}{2}$+2kπ(k∈Z)時,該函數(shù)都取得最小值-1,故①②錯誤,
由圖象知,函數(shù)圖象關于直線x=$\frac{5π}{4}$+2kπ(k∈Z)對稱,
在2kπ<x<$\frac{π}{2}$+2kπ(k∈Z)時,0<f(x)≤$\frac{\sqrt{2}}{2}$,故③④正確.
故答案為 ③④
點評 本題考點是三角函數(shù)的最值,本題是函數(shù)圖象的運用,由函數(shù)的圖象研究函數(shù)的性質,并以由圖象研究出的結論判斷和函數(shù)有關的命題的真假.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {$\frac{5π}{4}$} | B. | {$\frac{π}{4}$} | C. | {2kπ+$\frac{π}{4}$}(k∈Z) | D. | {kπ+$\frac{π}{4}$}(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | Sn=2n | B. | Sn=4n | C. | Sn=2n | D. | Sn=4n-4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-1<x<2} | C. | {x|x<-2或x>1} | D. | {x|x<-1或x>2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a,b中至少有一個為0 | B. | a,b中至少有一個不為0 | ||
C. | a,b全為0 | D. | a,b中只有一個不為0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,-1) | B. | (-3,1) | C. | (-3,-1) | D. | (3,1) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com