設(shè)
e1
,
e2
為單位向量,其中
a
=2
e1
+
e2
b
=
e2
,且
a
b
上的投影為2,則
e1
e2
的夾角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積運算、投影的意義即可得出.
解答: 解:設(shè)θ為
e1
e2
的夾角,則
a
b
|
b
|
=
(2
e1
+
e2
)•
e2
|
e2
|
=
2
e1
e2
+
e2
2
1
=
2×|
e1
| |
e2
|cosθ+1
1
=2cosθ+1=2,
解得:cosθ=
1
2
,
θ=
π
3

故選:C.
點評:本題考查了數(shù)量積運算、投影的意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù).當x>0時,f(x)=2x3-9x2+12x,則不等式f(x)≥-f(-1)在R上的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何的三視圖如圖所示,則該幾何體的體積為(  )
A、
8
3
B、8
C、
4
3
5
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足條件
x-y≤0
x+y≥0
y≤1
,則x+2y的最大值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有關(guān)函數(shù)單調(diào)性的敘述中,正確的是( 。
A、y=-
2
x
 在定義域上為增函數(shù)
B、y=
1
x2+1
在[0,+∞)上為增函數(shù)
C、y=-3x2-6x的減區(qū)間為[-1,+∞)
D、y=ax+3在(-∞,+∞)上必為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(-1,1)上是減函數(shù)的是( 。
A、y=2-3x2
B、y=lnx
C、y=
1
x-2
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,如圖給出程序框圖,當k=5時,輸出的S=( 。
A、
4
9
B、
5
11
C、
10
11
D、
6
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1.x∈[0,1]
,則下列敘述中不正確的一項是( 。
A、
f(x-1)的圖象
B、
|f(x)|的圖象
C、
f(-x)的圖象
D、
f(|x|)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1=27,q=-
1
3
,則S3=( 。
A、21B、22C、12D、28

查看答案和解析>>

同步練習(xí)冊答案