若實(shí)數(shù)x、y滿足條件
x-y≤0
x+y≥0
y≤1
,則x+2y的最大值是( 。
A、1B、2C、3D、4
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)z=x+2y,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
設(shè)z=x+2y得y=-
1
2
x+
z
2

平移直線y=-
1
2
x+
z
2
,由圖象可知當(dāng)直線y=-
1
2
x+
z
2
經(jīng)過(guò)點(diǎn)C時(shí),
直線y=-
1
2
x+
z
2
的截距最大,此時(shí)z最大,
y=1
x-y=0
,解得
x=1
y=1
,即C(1,1)
此時(shí)z=1+2=3,
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,點(diǎn)D在邊BC上,且DC=2BD,AB:AD:AC=3:2:1,則BD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,不等式
x+y≥0
x-y+4≥0
x≤1
表示的平面區(qū)域面積是n,則二項(xiàng)式(x-
2
x
n展開(kāi)式中x3項(xiàng)的系數(shù)是( 。
A、-672B、-84
C、84D、672

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(1,x),
b
=(x,4),則“x=
e
1
2
t
dt”是“
a
b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某幾何體的三視圖,則該幾何體的體積等于( 。
A、
2
3
B、
4
3
C、1
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(-8,6)是角終邊上一點(diǎn),則2sinα+cosα的值等于( 。
A、
1
5
B、-
1
5
C、-
2
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
為單位向量,其中
a
=2
e1
+
e2
,
b
=
e2
,且
a
b
上的投影為2,則
e1
e2
的夾角為(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足z(2-i)=1,則
.
z
=(  )
A、
2
5
+
1
5
i
B、
2
5
-
1
5
i
C、
1
5
+
2
5
i
D、
1
5
-
2
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲,乙,丙,丁,戊5名學(xué)生進(jìn)行某種勞動(dòng)技術(shù)比賽決出第1名到第5名的名次(無(wú)并列).甲乙兩名參賽者去詢問(wèn)成績(jī),回答者對(duì)甲說(shuō)“很遺憾,你和乙都沒(méi)有得到冠軍”;對(duì)乙說(shuō)“你當(dāng)然不是最差的”.從這個(gè)人的回答中分析,5人的名次情況共有( 。┓N.
A、54B、48C、36D、72

查看答案和解析>>

同步練習(xí)冊(cè)答案