直線l:x-y+1=0關于y軸對稱的直線方程為( 。
分析:如果直線l與直線x-y+1=0關于y軸對稱,則直線l與直線x-y+1=0的斜率相反,且經(jīng)過x-y+1=0與y軸的交點,由點斜式易求出直線l的方程.
解答:解:∵直線l:x-y+1=0的斜率為1,且于y軸交于(0,1)點,
又∵直線l與直線l:x-y+1=0關于y軸對稱
∴直線l的斜率為-1,且過(0,1)點,
則直線l的方程為y=-x+1,即x+y-1=0
故選A.
點評:本題考查直線關于直線對稱的直線方程,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓心為C的圓經(jīng)過點A(0,-6),B(1,-5),且圓心在直線l:x-y+1=0上,求圓心為C的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M,N在圓x2+y2+kx+2y-4=0上,且點M,N關于直線l:x-y+1=0對稱,則該圓的半徑為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線L:x+y-1=0(1)求直線2x+2y+3=0與直線L之間的距離;(2)求L關于(-1,0)的對稱直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一圓C的圓心為C(2,-1)且該圓被直線l:x-y-1=0截得弦長為2
2
,求該圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,1)和B(2,2),且圓心C在直線l:x-y+1=0上.
(1)求圓C的方程;
(2)試判斷圓C與圓D:(x-1)2+(y-3)2=4的位置關系.

查看答案和解析>>

同步練習冊答案