7.“因為對數(shù)函數(shù)y=logax是增函數(shù),而y=log${\;}_{\frac{1}{2}}$x是對數(shù)函數(shù),所以y=log${\;}_{\frac{1}{2}}$x是增函數(shù)”.有關(guān)這個“三段論”的推理形式和推理結(jié)論正確的說法是( 。
A.形式正確,結(jié)論正確B.形式錯誤,結(jié)論錯誤
C.形式正確,結(jié)論錯誤D.形式錯誤,結(jié)論正確

分析 對于對數(shù)函數(shù)來說,底數(shù)的范圍不同,則函數(shù)的增減性不同,當a>1時,函數(shù)是一個增函數(shù),當0<a<1時,對數(shù)函數(shù)是一個減函數(shù),對數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù)這個大前提是錯誤的.

解答 解:∵當a>1時,函數(shù)y=logax(a>0且a≠1)是一個增函數(shù),
當0<a<1時,此函數(shù)是一個減函數(shù)
∴y=logax(a>0且a≠1)是增函數(shù)這個大前提是錯誤的,
從而導(dǎo)致結(jié)論錯.
故選C.

點評 本題考查演繹推理的基本方法,考查對數(shù)函數(shù)的單調(diào)性,是一個基礎(chǔ)題,解題的關(guān)鍵是理解函數(shù)的單調(diào)性,分析出大前提是錯誤的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出的S為( 。
A.22013-1B.$\frac{1}{3}({2^{2014}}-1)$C.$\frac{1}{3}({2^{2013}}-1)$D.22014-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.存在函數(shù)f(x)滿足:對任意x∈R,都有( 。
A.f(sinx)=sin2xB.f(cosx)=sin2xC.f(x2-2x)=|x-1|D.f(|x-1|)=x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{3}$,半焦距為c,拋物線x2=2cy的準線方程為y=-2,則橢圓的標準方程為( 。
A.$\frac{x^2}{12}+\frac{y^2}{8}=1$B.$\frac{x^2}{144}+\frac{y^2}{128}=1$C.$\frac{x^2}{128}+\frac{y^2}{144}=1$D.$\frac{x^2}{8}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正實數(shù)a,b滿足$\frac{1}{a}+\frac{9}=6$,則(a+1)(b+9)的最小值是(  )
A.36B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知F1,F(xiàn)2為橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦點,M為橢圓上動點,有以下四個結(jié)論:
①|(zhì)MF2|的最大值大于3;
②|MF1|•|MF2|的最大值為4;
③∠F1MF2的最大值為60°;
④若動直線l垂直y軸,交此橢圓于A、B兩點,P為l上滿足|PA|•|PB|=2的點,則點P的軌跡方程為$\frac{x^2}{2}+\frac{{2{y^2}}}{3}=1$或$\frac{x^2}{6}+\frac{{2{y^2}}}{9}=1$.
以上結(jié)論正確的序號為②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前64項和為2080.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)Sn是數(shù)列{an}的前項和,且a1=1,an+1=an+2,則Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=3x-x3,則函數(shù)f(x)的極大值點為( 。
A.-1B.1C.(-1,-2)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案