19.圖1是隨機(jī)抽取的15戶居民月均用水量(單位:t)的莖葉圖,月均用水量依次記為A1、A2、…A15,圖2是統(tǒng)計(jì)莖葉圖中月均用水量在一定范圍內(nèi)的頻數(shù)的一個(gè)程序框圖,那么輸出的結(jié)果n=7.

分析 算法的功能是計(jì)算15戶居民在月均用水量中,大于2.1的戶數(shù),根據(jù)莖葉圖可得月均用水量的戶數(shù),求出n的值.

解答 解:由程序框圖知:算法的功能是計(jì)算15戶居民在月均用水量中,大于2.1的戶數(shù),
由莖葉圖得,在15戶居民用水中中,大于2.1的戶數(shù)有7戶,
∴輸出n的值為7.
故答案為:7.

點(diǎn)評 本題借助莖葉圖考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在三棱錐A-BCD中,E是AC中點(diǎn),F(xiàn)在AD上,且2AF=FD,若三棱錐A-BEF的體積是1,則四棱錐B-ECDF的體積為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在數(shù)列{an}中,若存在非零實(shí)數(shù)T,使得${a_{n+T}}={a_n}({N∈{n^*}})$成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.若數(shù)列{bn}滿足bn+1=|bn-bn-1|,且b1=1,b2=a(a≠0),則當(dāng)數(shù)列{bn}的周期最小時(shí),其前2017項(xiàng)的和為( 。
A.672B.673C.1345D.3025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''(x)是f′(x)的導(dǎo)數(shù).若方程f''(x)=0有實(shí)數(shù)解x0,則該點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$
請你根據(jù)這一發(fā)現(xiàn),
(1)求函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$的對稱中心;
(2)計(jì)算$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等邊三角形的一個(gè)頂點(diǎn)坐標(biāo)是($\frac{\sqrt{3}}{4}$,0),另外兩個(gè)頂點(diǎn)在拋物線y2=$\sqrt{3}$x上,則這個(gè)等邊三角形的邊長為( 。
A.3B.6C.2$\sqrt{3}$±3D.2$\sqrt{3}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+2a|+|x-1|,a∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)≤5;
(2)若f(x)≥2對于?x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),若|AB|=4,則C的實(shí)軸長為( 。
A.4B.2C.4$\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩個(gè)不相等的非零向量$\overrightarrow{a}$,$\overrightarrow$,兩組向量均由$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2個(gè)$\overrightarrow{a}$和2個(gè)$\overrightarrow$排列而成,記S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,Smin表示S所有可能取值中的最小值,則下列命題中正確的個(gè)數(shù)為( 。
①S有3個(gè)不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow$,則Smin與|$\overrightarrow$|無關(guān);
③若$\overrightarrow{a}$∥$\overrightarrow$,則Smin與|$\overrightarrow$|無關(guān);
④若|$\overrightarrow$|=2|$\overrightarrow{a}$,Smin=4${|\overrightarrow{a}|}^{2}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow$=(x,3$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則x=1.

查看答案和解析>>

同步練習(xí)冊答案