二面角α-BC-β等于100°, ABα, AB⊥BC, CDβ, CD⊥BC, 則AB與CD所成的角是________度.
答案:80
解析:

解: 由圖形即可知答案為80°.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在邊長為a的等邊三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=
a2
,這時(shí)二面角B-AD-C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖平面SAC⊥平面ACB,△SAC是邊長為4的等邊三角形,△ACB為直角三角形,∠ACB=90°,BC=4
2
,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點(diǎn).
(1)求證:AO∥平面DEF;
(2)求證:平面DEF⊥平面BCED;
(3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲.如圖1,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=
2
:1,F(xiàn)是AB的中點(diǎn).
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù);
(3)當(dāng)V到平面ABCD的距離是3時(shí),求B到平面VFC的距離.
乙、如圖正方體ABCD-A1B1C1D1中,E、F、G分別是B1B、AB、BC的中點(diǎn).
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
D1B

注意:考生在(19甲)、(19乙)兩題中選一題作答,如果兩題都答,只以(19甲)計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•朝陽區(qū)二模)如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M為BC的中點(diǎn).
(Ⅰ)證明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求直線PD與平面PAM所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案