已知|z-3i|=|z+2+i|(i為虛數(shù)單位),則|z|的最小值為
 
考點(diǎn):復(fù)數(shù)求模
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義即可得到結(jié)論.
解答: 解:復(fù)數(shù)z的幾何意義為定點(diǎn)A(0,3)和B(-2,-1)的中垂線,
則由圖象可知圓心到中垂線的距離最小,
A,B的中點(diǎn)為(-1,1),AB的斜率k=
-1-3
-2
=2
,
則中垂線的斜率k=-
1
2
,
則直線方程為y-1=-
1
2
(x+1),
即x+2y-1=0,
則圓心到直線x+2y-1=0的距離d=
|-1|
1+22
=
1
5
=
5
5

故答案為:
5
5
點(diǎn)評:本題主要考查復(fù)數(shù)的幾何意義,以及點(diǎn)到直線的距離的計算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲:函數(shù)f(x)是奇函數(shù);乙:函數(shù)f(x)在定義域上是增函數(shù).對于函數(shù)①f(x)=tan x,②f(x)=-
1
x
,③f(x)=x|x|,能使甲、乙均為真命題的所有函數(shù)的序號是( 。
A、①②B、②③C、③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的是 ( 。
A、i>20B、i<20
C、i>=20D、i<=20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將表的分針撥快(順時針)10分鐘,則分針旋轉(zhuǎn)過程中形成的角的弧度數(shù)是(  )
A、
π
3
B、
π
6
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={a1,a2},Q={b1,b2},定義集合P※Q={(a,b)|a∈P,b∈Q},則集合P※Q中的元素有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax5+bx3+cx+5,(a,b,c不為零),且f(5)=10,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,角α的終邊與單位圓(圓心在原點(diǎn),半徑為1)交于第二象限的點(diǎn)A(cosα,
3
5
),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|1<x<2},B={x|x<a},且A⊆B,則實(shí)數(shù)a的范圍( 。
A、a≥2
B、a>2
C、a≤1
D、0<x≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,BC=3,AB=4,DA=6
(1)當(dāng)AA1=5時,求直線C1D與平面ABCD所成角的正切值;
(2)當(dāng)AA1的值變化時,求點(diǎn)C到平面A1C1D的距離d的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案