14.若正實(shí)數(shù)x,y滿足log2(x+3y)=log4x2+log2(2y),則3x+y的最小值是( 。
A.12B.6C.16D.8

分析 正實(shí)數(shù)x,y滿足log2(x+3y)=log4x2+log2(2y),得:x+3y=2xy,即$\frac{1}{y}+\frac{3}{x}$=2,利用“1”的代換,即可求出3x+y的最小值.

解答 解:∵正實(shí)數(shù)x,y滿足log2(x+3y)=log4x2+log2(2y),
∴(x+3y)2=x2(2y)2,整理,得:x+3y=2xy,
∴$\frac{1}{y}+\frac{3}{x}$=2,
∴3x+y=$\frac{1}{2}$(3x+y)($\frac{1}{y}+\frac{3}{x}$)=$\frac{1}{2}$(10+$\frac{3x}{y}$+$\frac{3y}{x}$)≥$\frac{1}{2}$(10+6)=8,
故選D.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,下圖畫出的是某空間幾何體的三視圖,則該幾何體的最短棱長(zhǎng)為(  )
A.4B.5C.4$\sqrt{2}$D.$\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中,在(-∞,0)內(nèi)為減函數(shù)的是( 。
A.y=3xB.y=x3C.y=2x+1D.y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.2016年8月江西某高校的成立了一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)大學(xué)生的“4G使用流量問(wèn)題”的調(diào)查中,隨機(jī)發(fā)放了120份問(wèn)卷,對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
流量超過(guò)1000M流量沒(méi)有超過(guò)1000M合計(jì)
202545
401555
合計(jì)6040100
(1)現(xiàn)已按4G使用流量問(wèn)題采用分層抽樣從45份男生問(wèn)卷中抽取了9份問(wèn)卷,試問(wèn)應(yīng)該從“流量超過(guò)1000M”和“流量沒(méi)有超過(guò)1000M”各抽取多少人?
(2)如果認(rèn)為良好“4G使用流量問(wèn)題”與性別有關(guān)犯錯(cuò)誤的概率不超過(guò)P,那么根據(jù)臨界值表最精確的P的值應(yīng)為多少?請(qǐng)說(shuō)明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知全集U=R,集合A={x|x2-2x-3>0},B={x|4-x2≤0},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn)為A、B,左右焦點(diǎn)為F1,F(xiàn)2,其長(zhǎng)半軸的長(zhǎng)等于焦距,點(diǎn)Q是橢圓上的動(dòng)點(diǎn),△QF1F2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP、BP分別與橢圓交于異于A、B的點(diǎn)M、N,判斷點(diǎn)B與以MN為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2alnx-x2+1(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若a>0,求函數(shù)f(x)在區(qū)間[1,+∞)上的最大值;
(Ⅲ)若f(x)≤0在區(qū)間[1,+∞)上恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,若復(fù)數(shù)$a-\frac{10}{3-i}(a∈R)$是純虛數(shù),則a的值為(  )
A.3B.-1C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(2cosx,1),\overrightarrow n=(cosx,\sqrt{3}sin2x),x∈R$
(1)求出f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求f(x)在[$-\frac{π}{6},\frac{π}{4}]$上最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案