拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=90°.過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|
MN
|
|
AB
|
的最大值為( 。
A、
2
2
B、
3
2
C、1
D、
3
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)|AF|=a,|BF|=b,由拋物線定義,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,進(jìn)而根據(jù)基本不等式,求得|AB|的范圍,即可得到答案.
解答: 解:設(shè)|AF|=a,|BF|=b,
由拋物線定義,得AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.
由勾股定理得,|AB|2=a2+b2配方得,
|AB|2=(a+b)2-2ab,
又ab≤(
a+b
2
)2
,
∴(a+b)2-2ab≥(a+b)2-2(
a+b
2
)2

得到|AB|≥
2
2
(a+b).
|
MN
|
|
AB
|
1
2
(a+b)
2
2
(a+b)
=
2
2
,即
|
MN
|
|
AB
|
的最大值為
2
2

故選A.
點(diǎn)評(píng):本題主要考查拋物線的應(yīng)用和解三角形的應(yīng)用,考查基本不等式,考查了計(jì)算能力、分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,求下列各式的值:
(1)
2sinα-3cosα
4sinα-9cosα
;
(2)
1
sin2α-sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)等腰直角△ABC的一條直角邊長(zhǎng)為4,若將該三角形繞著直角邊旋轉(zhuǎn)一周所得的幾何體的體積是V,則V=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)大正方形平均分成9個(gè)小正方形,向大正方形區(qū)域隨機(jī)地投擲一個(gè)點(diǎn)(每次都能投中),投中最左側(cè)3個(gè)小正方形區(qū)域的事件記為A,投中最上面3個(gè)小正方形或正中間的1個(gè)小正方形區(qū)域的事件記為B,則P(A|B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(2,0)的直線把圓x2+y2≤1(區(qū)域)分成兩部分(弓形),它們所包含的最大圓的直徑之比是1:2,則此直線的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a=4,b=4
3
,A=30°,則C等于( 。
A、90°
B、90°或 150°
C、90°或30°
D、60°或 120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+2ax-4≥2x2+4x的解集為空集,則實(shí)數(shù)a的取值范圍是( 。
A、(-2,2)
B、(-∞,2]
C、(-2,2]
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2+2x-3
的單調(diào)增區(qū)間是( 。
A、[1,+∞)
B、(-∞,-1]
C、(-∞,-3]
D、[-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列an=
1
3n-1
,其前n項(xiàng)和為Sn=
n
k-1
ak,則Sk+1與Sk的遞推關(guān)系不滿足( 。
A、Sk+1=Sk+
1
3k+1
B、Sk+1=1+
1
3
Sk
C、Sk+1=Sk+ak+1
D、Sk+1=3Sk-3+ak+ak+1

查看答案和解析>>

同步練習(xí)冊(cè)答案