16.函數(shù)f(x)對于任意實數(shù)x滿足條件$f({x+2})=\frac{1}{f(x)}$,若f(1)=-5,則f(f(5))=$-\frac{1}{5}$.

分析 路函數(shù)的周期性求出函數(shù)的周期,然后最后求解函數(shù)值即可.

解答 解:∵函數(shù)f(x)對于任意實數(shù)x滿足條件$f({x+2})=\frac{1}{f(x)}$,
∴f(x+4)=f[(x+2)+2]=$\frac{1}{f(x+2)}$=$\frac{1}{\frac{1}{f(x)}}$=f(x),
即函數(shù)f(x)是以4為周期的周期函數(shù),
∵f(1)=-5
∴f[f(5)]=f[f(1)]=f(-5)=f(3)=$\frac{1}{f(1)}$=-$\frac{1}{5}$.
故答案為:$-\frac{1}{5}$.

點評 本題考查抽象函數(shù)的應(yīng)用,函數(shù)的周期性以及函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{i}{1+2i}$的共軛復(fù)數(shù)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.{an}為等比數(shù)列,則“a1<a2<a3”是“a4<a5”的既不充分也不必要條件
C.若a,b∈R,則|a|+|b|>1是|a+b|>1的充分而不必要條件
D.“$tanα≠\sqrt{3}$”必要不充分條件是“$α≠\frac{π}{3}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題“?a,b∈R,如果ab>0,則a>0”,則它的逆否命題是(  )
A.?a,b∈R,如果ab<0,則a<0B.?a,b∈R,如果a≤0,則ab≤0
C.?a,b∈R,如果ab<0,則a<0D.?a,b∈R,如果a≤0,則ab≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(a+b)=f(a)•f(b),f(1)=2,則$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$y=1+\frac{1}{{{x^2}+2x+2}}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x+1|.
(1)求不等式f(x+2)+f(2x)≥4的解集;
(2)若|m|>1,|n|>1,求證:$\frac{f(mn)}{|m|}$>f($\frac{n}{m}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R的偶函數(shù)f(x)滿足f(x)=f(x+2),且當x∈[-1,0]時,f(x)=3x,則f(-$\frac{15}{2}$)=( 。
A.$-\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx+ax,a∈R
(1)若函數(shù)f(x)在(1,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=-1時,$g(x)=f(x)+x+\frac{1}{2x}-m$有兩個零點x1,x2,且x1<x2,求證:x1+x2>1.

查看答案和解析>>

同步練習(xí)冊答案