【題目】已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
⑶在⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.
【答案】(1) (2) = - 2ln2 +ln3
【解析】
導(dǎo)數(shù)部分的高考題型主要表現(xiàn)在:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),高考對(duì)這一知識(shí)點(diǎn)考查的要求是:理解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值。⑴∵,∴當(dāng)時(shí),; 當(dāng)x<0時(shí),∴當(dāng)x>0時(shí),; ………………2’
當(dāng)時(shí),
∴當(dāng)時(shí),函數(shù)………………………………………….4’
⑵∵由⑴知當(dāng)時(shí),,…………………………………………………..5’
∴當(dāng)時(shí), 當(dāng)且僅當(dāng)時(shí)取等號(hào)………………………7’
∴函數(shù)在上的最小值是,∴依題意得∴…….8’
⑶由解得…………………………….10’
∴直線與函數(shù)的圖象所圍成圖形的面積= - 2ln2 +ln3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).
(Ⅰ)若分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;
(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:
①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為;
②函數(shù)的極值點(diǎn)不可能是;
③函數(shù)必有最小值.
其中正確結(jié)論的個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在點(diǎn)處切線的斜率為4,求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,試討論的單調(diào)性;
(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,兩兩垂直,,,分別是的中點(diǎn).
(1)證明:平面面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com