(14分)已知函數(shù),其中a是實(shí)數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點(diǎn),且x1<x2.
(Ⅰ)指出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線互相垂直,且x2<0,證明:x2﹣x1≥1;
(Ⅲ)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出場(chǎng)單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購量不會(huì)超過600件.
(1)設(shè)一次訂購x件,服裝的實(shí)際出廠單價(jià)為p元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件服裝時(shí),該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我省某景區(qū)為提高經(jīng)濟(jì)效益,現(xiàn)對(duì)某一景點(diǎn)進(jìn)行改造升級(jí),從而擴(kuò)大內(nèi)需,提高旅游增加值,經(jīng)過市場(chǎng)調(diào)查,旅游增加值萬元與投入萬元之間滿足:
為常數(shù)。當(dāng)萬元時(shí),萬元;
當(dāng)萬元時(shí),萬元。 (參考數(shù)據(jù):)
(1)求的解析式;
(2)求該景點(diǎn)改造升級(jí)后旅游利潤的最大值。(利潤=旅游增加值-投入)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開口向下且對(duì)稱軸為x=3的拋物線,試比較大小:
(1)f(6)與f(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為大于零的常數(shù),,函數(shù)的圖像與坐標(biāo)軸交點(diǎn)處的切線為,函數(shù)的圖像與直線交點(diǎn)處的切線為,且.
(I)若在閉區(qū)間上存在使不等式成立,求實(shí)數(shù)的取值范圍;
(II)對(duì)于函數(shù)和公共定義域內(nèi)的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的偏差.求證:函數(shù)和在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的單調(diào)函數(shù)滿足且對(duì)任意都有.
(1)求證為奇函數(shù);
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),判斷和的大小,并說明理由;
(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果函數(shù)f(x)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/51/c/vxwsn2.png" style="vertical-align:middle;" />,且f(x)為增函數(shù),f(xy)=f(x)+f(y)。
(1)證明:;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com