某市出租車收費標準如下:起步價為8元,起步里程為3km(不超過3km按起步價付費);超過3km但不超過8km時,超過部分按每千米2.15元收費;超過8km時,超過部分按每千米2.85元收費,另每次乘坐需付燃油附加費1元.現(xiàn)某人乘坐一次出租車付費22.6元,則此次出租車駛了多少km?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:函數(shù)的性質及應用
分析:根據(jù)問題先建立付費關于路程的函數(shù),由于收費標準不同,所以要分段處理,按照每段的條件建立函數(shù),再寫成分段函數(shù),然后,再由函數(shù)值求自變量.要注意討論.
解答: 解:設乘客每次乘坐出租車需付費用為f(x)元,
令f(x)=22.6,
①當0<x≤3時,f(x)=8+1=9=22.6,不成立
②當3<x≤8時,f(x)=8+1+(x-3)×2.15=22.6,不成立
③當x>8時,f(x)=8+1+5×2.15+(x-8)×2.85=22.6,
解得x=9.符合題意,
即此次出租車駛了9km.
點評:本題是一道應用題,首先要根據(jù)實際意義,抽象數(shù)學問題,建立數(shù)學模型,要注意一些關鍵詞和關鍵句,明確模型的適用條件和范圍,然后,再應用模型解決實際問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
ln(x2-x-2)
|x|+x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a>0>b,c<d<0,給出以下三個結論:①ad<bc;②a+c2>b+d2;③b-c>a-c.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)在線段PA上是否存在點G,使得EG∥平面PFD,若存在,確定點G的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠家準備在2014年12月份舉行促銷活動,依以往的數(shù)據(jù)分析,經(jīng)測算,該產(chǎn)品的年銷售量x萬件(假設該廠生產(chǎn)的產(chǎn)品全部銷售),與年促銷費用y萬元(0≤m≤4)近似滿足x=3-
k
m+1
(k為常數(shù)),如果不促銷,該產(chǎn)品的年銷售量只能是1萬件,已知2014年生產(chǎn)該產(chǎn)品的固定投入8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.廠家將每件產(chǎn)品的銷售價格規(guī)定的每件產(chǎn)品生產(chǎn)平均成本的1.5倍,(產(chǎn)品生產(chǎn)平均成本指固定投入和再投入兩部分資金的平均成本).
(1)將2014年該產(chǎn)品的年利潤y萬元表示為年促銷費用m萬元的函數(shù);
(2)該廠家2014年的年促銷費用投入為多少萬元時,該廠家的年利潤最大?并求出最大年利潤.
(3)在年銷量不少于2萬件的前提下,廠家的年利潤是否隨著年促銷費用的增加而增加?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

21世紀我國將全面實現(xiàn)小康社會,家庭理財將成為增加居民收入新亮點,某投資機構根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比,已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).已知函數(shù)f(x)=alnx-ax-3(a∈R)

(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關系;
(2)若你家現(xiàn)有20萬元資金,全部用于投資理財,問:請你根據(jù)所學知識幫助你的父母來合理分配資金獲得最大收益,并計算最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為(0,+∞)上的單調遞增函數(shù)f(x),滿足:?x∈(0,+∞),有f(f(x)-lnx)=1,則方程f(x)=-x2+4x-2解的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是橢圓
x2
25
+
y2
16
=1上任一點,F(xiàn)1,F(xiàn)2為左右焦點
(1)求橢圓的頂點坐標,長軸長、短軸長及離心率;
(2)若∠F1PF2=60°,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題錯誤的是(  )
A、在△ABC中,“A>B”是“sinA>sinB”的充要條件
B、點(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個對稱中心
C、若|
a
|=1,|
b
|=2,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1
D、“sinα=sinβ”的充要條件是“α+β=(2k+1)π或α-β=2kπ(k∈Z)”

查看答案和解析>>

同步練習冊答案