已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)在線段PA上是否存在點(diǎn)G,使得EG∥平面PFD,若存在,確定點(diǎn)G的位置;若不存在,說明理由.
考點(diǎn):直線與平面平行的性質(zhì),空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:(1)利用線面垂直的判定定理,先證明DF⊥平面PAF,即可得出結(jié)論;
(2)過點(diǎn)E作EH∥FD,交AD于點(diǎn)H,則EH∥平面PFD,且AH=
1
4
AD,再過點(diǎn)H作HG∥DP交PA于點(diǎn)G,則HG∥平面PFD且AG=
1
4
AP,從而平面GEH∥平面PFD,即可得出結(jié)論.
解答: (1)證明:連接AF,則AF=
2
,DF=
2
,
∵AD=2,
∴AF2+DF2=AD2
∴AF⊥DF,
∵PA丄平面ABCD,
∴PA⊥DF,
∵PA∩AF=A
∴DF⊥平面PAF,
∵PF?平面PAF,
∴PF⊥FD.
(2)解:過點(diǎn)E作EH∥FD,交AD于點(diǎn)H,則EH∥平面PFD,且AH=
1
4
AD.
再過點(diǎn)H作HG∥DP交PA于點(diǎn)G,則HG∥平面PFD且AG=
1
4
AP,
∴平面GEH∥平面PFD.
∵EG?平面GEH,
∴EG∥平面PFD.
從而滿足AG=
1
4
AP的點(diǎn)G為所求.
點(diǎn)評:本題考查線面垂直,線面平行,考查學(xué)生分析解決問題的能力,正確運(yùn)用線面垂直,線面平行的判定定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={-1,0,1,2,3},P={-1,2,3},則∁UP=(  )
A、{0,1}
B、{-1,0,1}
C、{0,1,2}
D、{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)公式an=2n-9,(n∈N+) 則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二項(xiàng)式定理證明:
(1)32n+2-8n-9能被64整除(n∈N);
(2)2n>n2(n≥5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=3x2-2x在x=1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

爸爸去哪兒節(jié)目組安排星娃們露營,村長要求,F(xiàn)eyman、楊陽洋、貝兒依次在A、B、C三處扎篷.AB=8米,BC=4米,AC=6米.現(xiàn)村長給多多一個(gè)難題,要求她安扎在B、C兩點(diǎn)之間的連線段的D處,且∠ADC=60°.問多多與Feyman相距
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市出租車收費(fèi)標(biāo)準(zhǔn)如下:起步價(jià)為8元,起步里程為3km(不超過3km按起步價(jià)付費(fèi));超過3km但不超過8km時(shí),超過部分按每千米2.15元收費(fèi);超過8km時(shí),超過部分按每千米2.85元收費(fèi),另每次乘坐需付燃油附加費(fèi)1元.現(xiàn)某人乘坐一次出租車付費(fèi)22.6元,則此次出租車駛了多少km?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5則p是q的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是系統(tǒng)抽樣.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4x,x≥0
4x-x2,x<0
,若f(2-a)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,2)
B、(-∞,1)
C、(1,2)
D、(-∞,-1)

查看答案和解析>>

同步練習(xí)冊答案