10.各項為正數(shù)的數(shù)列{an}前n項和為Sn,且${S_{n+1}}={a_2}{S_n}+{a_1},\;n∈{N^*}$,當且僅當n=1,n=2時Sn<3成立,那么a2的取值范圍是[1,2).

分析 ${S_{n+1}}={a_2}{S_n}+{a_1},\;n∈{N^*}$,可得:a1+a2=a2•a1+a1,a2>0,解得a1=1.由a1+a2+a3=a2(a1+a2)+a1,解得:
a3.當且僅當n=1,n=2時Sn<3成立,n≥3時,Sn≥3.解出即可得出.

解答 解:∵${S_{n+1}}={a_2}{S_n}+{a_1},\;n∈{N^*}$,
∴a1+a2=a2•a1+a1,a2>0,解得a1=1.
a1+a2+a3=a2(a1+a2)+a1,解得:a3=${a}_{2}^{2}$.
當且僅當n=1,n=2時Sn<3成立,n≥3時,Sn≥3.
∴1+a2+${a}_{2}^{2}$≥3,1+a2<3.
解得1≤a2<2.
那么a2的取值范圍是[1,2).
故答案為:[1,2).

點評 本題考查了數(shù)列的遞推關系、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.兩直線ρsin(θ+$\frac{π}{4}$)=2011,ρsin(θ-$\frac{π}{4}$)=2012的位置關系是( 。
A.平行B.垂直C.相交D.重合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)當0<x<2時不等式f(x)>ax-5恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題 p:?x∈R,x-2>lgx,命題 q:?x∈R,x2>0,則( 。
A.命題p∨q 是假命題B.命題 p∧q是真命題
C.命題p∧(¬q) 是真命題D.命題 p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)z(1+i)=2i(i是虛數(shù)單位),則復數(shù)z的虛部是(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{4}$-y2=1,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.復數(shù)$\frac{4-2i}{{{{({1+i})}^2}}}$=(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.(2x-3)7的展開式中,各項系數(shù)的和為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)$g(x)=2{e^x}+x-3\int_1^2{t^2}dt$的零點所在的區(qū)間是( 。
A.(-3,-1)B.(-1,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步練習冊答案