19.設(shè)有兩個(gè)三元素的集合為M1={-3,x+1,x2},M2={x-3,2x-1,x2+1},若M1∩M2={-3},則x的值為( 。
A.2B.0C.1D.-1

分析 由題意M1∩M2={-3},說(shuō)明-3∈M2,則x-3=-3或2x-1=-3,得到x的值,在考查M1、M2的互異性,即可確定x的值.

解答 解:集合M1={-3,x+1,x2},M2={x-3,2x-1,x2+1},
由題意:M1∩M2={-3},
則x-3=-3或2x-1=-3,
解得x=0或x=-1
當(dāng)x=0時(shí),集合M1={-3,1,0},M2={-3,-1,1},
那么M1∩M2={-3,1},不符合題意,故得x≠0
當(dāng)x=-1時(shí),集合M1={-3,-1,0},M2={-3,-1,2},
那么M1∩M2={-3},符合題意,故得x=-1.
故選D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知y=$\frac{1}{2}$sin2x+sinx+3,那么導(dǎo)函數(shù)y′是(  )
A.既有最大值又有最小值的奇函數(shù)B.最大值為2的偶函數(shù)
C.最大值為1.5的偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知四邊形ABCD內(nèi)接于圓,延長(zhǎng)AB和DC相交于E,EG平分∠E,且與BC,AD分別相交于F,G.證明:
(Ⅰ)△EAG∽△ECF;
(Ⅱ)∠CFG=∠DGF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.用更相減損術(shù)求295和85的最大公約數(shù)時(shí),需要做減法的次數(shù)是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2(x≥2)\\ 2x(x<2)\end{array}\right.$,若f(a)>a,則實(shí)數(shù)a的取值范圍是a>2或0<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.從兩名男生和兩名女生中,任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,同一人不能重復(fù)參加活動(dòng),則星期六安排一名男生、星期日安排一名女生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=4sin$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{6}$)+2$\sqrt{3}$(cosx-1).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知在△ABC中,B、C坐標(biāo)分別為B (0,-4),C (0,4),且|AB|+|AC|=12,頂點(diǎn)A的軌跡方程是( 。
A.$\frac{x^2}{36}$+$\frac{y^2}{20}$=1(x≠0)B.$\frac{x^2}{20}$+$\frac{y^2}{36}$=1(x≠0)
C.$\frac{x^2}{6}$+$\frac{y^2}{20}$=1(x≠0)D.$\frac{x^2}{20}$+$\frac{y^2}{6}$=1(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線的極坐標(biāo)方程為3ρcosθ-4ρsinθ=3,求點(diǎn)P(2,$\frac{3π}{2}$)到這條直線的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案