已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),
(1)求的通項(xiàng)公式.
(2)記數(shù)列,的前三項(xiàng)和為,求證:

(1)
(2)根據(jù)利用累加法來得到證明。

解析試題分析:解(1)是一個(gè)與無關(guān)的常數(shù)   2分
   4分
   6分
(2) 8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/c/umidm3.png" style="vertical-align:middle;" />
  12分
所以:  12分
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):主要是考查了的等比數(shù)列的通項(xiàng)公式以及求和的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),,數(shù)列滿足:,.
(Ⅰ)求證數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(Ⅱ)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)在函數(shù)的圖像上,(其中
(Ⅰ)求證數(shù)列是等比數(shù)列;
(Ⅱ)設(shè),求及數(shù)列的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅲ)若,,求不超過的最大的整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng),…的最小值記為Bn,dn=An-Bn.
(I)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n∈N*,),寫出d1,d2,d3,d4的值;
(II)設(shè)d為非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}為公差為d的等差數(shù)列;
(III)證明:若a1=2,dn=1(n=1,2,3…),則{an}的項(xiàng)只能是1或2,且有無窮多項(xiàng)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在圖中,(),

(1)求數(shù)列的通項(xiàng);
(2)求數(shù)列的前項(xiàng)和;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列。
(1)求{}的公比q;     (2)求=3,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知等比數(shù)列{}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(II)若,問數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正項(xiàng)數(shù)列中,前n項(xiàng)和為,且,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案