在圖中,,(),

(1)求數(shù)列的通項;
(2)求數(shù)列的前項和

(1)(2)

解析試題分析:(1) 

……

故有:
所以,
(2)

=
=

考點:數(shù)列求通項求和
點評:本題中由數(shù)列的遞推公式求通項公式采用的是累和法,適用于通項公式為形式的數(shù)列,求和采用了簡單的分組求和,其中結(jié)合了等比數(shù)列求和公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,為其前項和,且
(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等比數(shù)列{}的前項和為,已知對任意的,點,均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點是函數(shù)的圖象上一點,數(shù)列的前n項和.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)將數(shù)列前2013項中的第3項,第6項, ,第3k項刪去,求數(shù)列前2013項中剩余項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均不相等的等差數(shù)列的前三項和為18,是一個與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項,
(1)求的通項公式.
(2)記數(shù)列,的前三項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列、滿足:.
(1)求
(2) 證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(3)設(shè),求實數(shù)為何值時恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等比數(shù)列中,已知,公比,等差數(shù)列滿足.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)記,求數(shù)列的前2n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
等比數(shù)列的各項均為正數(shù),且
(1)求數(shù)列的通項公式.
(2)設(shè) ,求數(shù)列的前n項和.

查看答案和解析>>

同步練習(xí)冊答案