20.若函數(shù)f(x)=-x-log2$\frac{2+ax}{2-x}$為奇函數(shù),則使不等式f($\frac{1}{m}$)+log26<0成立的m的取值范圍是( 。
A.(-∞,1)B.($\frac{1}{2}$,1)C.(-∞,0)∪(0,1)D.(1,+∞)

分析 利用函數(shù)f(x)=-x-log2$\frac{2+ax}{2-x}$為奇函數(shù),求出a,不等式f($\frac{1}{m}$)+log26<0,即不等式f($\frac{1}{m}$)<f(1),f(x)=-x-log2$\frac{2+x}{2-x}$在(-2,2)上單調(diào)遞減,即可求出m的取值范圍.

解答 解:∵函數(shù)f(x)=-x-log2$\frac{2+ax}{2-x}$為奇函數(shù),
∴f(-x)=-f(x),即x-log2$\frac{2-ax}{2+x}$=x+log2$\frac{2+ax}{2-x}$
∴a=1,
不等式f($\frac{1}{m}$)+log26<0,即不等式f($\frac{1}{m}$)<f(1),
∵f(x)=-x-log2$\frac{2+x}{2-x}$在(-2,2)上單調(diào)遞減,
∴2>$\frac{1}{m}$>1,
∴$\frac{1}{2}$<m<1,
故選B.

點(diǎn)評(píng) 本題考查奇函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性,考查學(xué)生解不等式的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C1的極坐標(biāo)方程為ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為$θ=\frac{π}{6}$,曲線C1、C2相交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線C1與直線$\left\{\begin{array}{l}x=2+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù))分別相交于M,N兩點(diǎn),求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖(1),在五邊形BCDAE中,CD∥AB,∠BCD=90°,CD=BC=1,AB=2,△ABE是以AB為斜邊的等腰直角三角形,現(xiàn)將△ABE沿AB折起,使平面ABE⊥平面ABCD,如圖(2),記線段AB的中點(diǎn)為O.
(Ⅰ)求證:平面ABE⊥平面EOD;
(Ⅱ)求平面ECD與平面ABE所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,橢圓E的離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)M (m,0)(m>$\frac{3}{4}$)作斜率不為0的直線l,交橢圓E于A,B兩點(diǎn),點(diǎn)P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,平行四邊形ABCD中,AC⊥BC,BC=AC=1,現(xiàn)將△DAC沿AC折起,得到三棱錐D-ABC(如圖2),且DA⊥BC,點(diǎn)E為側(cè)棱DC的中點(diǎn).
(Ⅰ)求證:平面ABE⊥平面DBC;
(Ⅱ)求三棱錐E-ABC的體積;
(Ⅲ)在∠ACB的角平分線上是否存在點(diǎn)F,使得DF∥平面ABE?若存在,求DF的長;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若至少存在一個(gè)x≥0,使得關(guān)于x的不等式x2≤4-|2x+m|成立,則實(shí)數(shù)m的取值范圍是( 。
A.[-4,5]B.[-5,5]C.[4,5]D.[-5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,并且經(jīng)過點(diǎn)M(-$\sqrt{2}$,1).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l與圓O:x2+y2=1相切,與橢圓C相交于A,B兩點(diǎn),求△AOB的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1,D是A1C1中點(diǎn).
(Ⅰ)求證:A1B∥平面B1CD;
(Ⅱ)當(dāng)三棱錐C-B1C1D體積最大時(shí),求點(diǎn)B到平面B1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算:
(1)$\frac{-2\sqrt{3}i+1}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1+i}$)2000+$\frac{1+i}{3-i}$;
(2)$\frac{{5{{(4+i)}^2}}}{i(2+i)}+\frac{2}{{{{(1-i)}^2}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案