【題目】一個(gè)袋中有7個(gè)大小、形狀相同的小球,6個(gè)白球1個(gè)紅球.現(xiàn)任取1個(gè),若為紅球就停止,若為白球就放回,攪拌均勻后再接著。囋O(shè)計(jì)一個(gè)模擬試驗(yàn),計(jì)算恰好第三次摸到紅球的概率.
【答案】0.1
【解析】試題分析:分別用1到7,這幾個(gè)數(shù)代表不同的球,用計(jì)算機(jī)產(chǎn)生1到7不同的數(shù)據(jù),每三個(gè)作為一組數(shù)據(jù),共產(chǎn)生20組;數(shù)出其中第三次代表紅球的數(shù)據(jù),有幾個(gè)這樣的數(shù)據(jù),就代表滿足條件的事件有幾個(gè),再除以20,就是估計(jì)的概率。
用1,2,3,4,5,6表示白球,7表示紅球,利用計(jì)算器或計(jì)算機(jī)產(chǎn)生1到7之間取整數(shù)值的隨機(jī)數(shù),因?yàn)橐笄『玫谌蚊郊t球的概率,所以每三個(gè)隨機(jī)數(shù)作為一組.例如,產(chǎn)生20組隨機(jī)數(shù).
666 743 671 464 571
561 156 567 732 375
716 116 614 445 117
573 552 274 114 622
就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,前兩個(gè)數(shù)字不是7,第三個(gè)數(shù)字恰好是7,就表示第一次、第二次摸的是白球,第三次恰好是紅球,它們分別是567和117共兩組,因此恰好第三次摸到紅球的概率約為 =0.1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為.設(shè)過點(diǎn)的直線與橢圓相交于不同兩點(diǎn), 周長為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),證明:當(dāng)直線變化時(shí),總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲參加A,B,C三個(gè)科目的學(xué)業(yè)水平考試,其考試成績合格的概率如下表,假設(shè)三個(gè)科目的考試甲是否成績合格相互獨(dú)立.
科目A | 科目B | 科目C | |
甲 |
(I)求甲至少有一個(gè)科目考試成績合格的概率;
(Ⅱ)設(shè)甲參加考試成績合格的科目數(shù)量為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某綜藝節(jié)目為增強(qiáng)娛樂性,要求現(xiàn)場嘉賓與其場外好友連線互動(dòng).凡是拒絕表演節(jié)目的好友均無連線好友的機(jī)會(huì);凡是選擇表演節(jié)目的好友均需連線未參加過此活動(dòng)的個(gè)好友參與此活動(dòng),以此下去.
(Ⅰ)假設(shè)每個(gè)人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的個(gè)好友中不少于個(gè)好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調(diào)查“選擇表演者”與其性別是否有關(guān),采取隨機(jī)抽樣得到如下列表:
選擇表演 | 拒絕表演 | 合計(jì) | |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 60 | 20 | 80 |
①根據(jù)表中數(shù)據(jù),是否有的把握認(rèn)為“表演節(jié)目”與好友的性別有關(guān)?
②將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查名男性好友,設(shè)為個(gè)人中選擇表演的人數(shù),求的分布列和期望.
附:;
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在天每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系用如圖表示,該商品在天內(nèi)日銷售量(件)與時(shí)間(天)之間的關(guān)系如下表:
天 | ||||
件 |
()根據(jù)提供的圖象(如圖),寫出該商品每件的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式.
()根據(jù)表提供的數(shù)據(jù),寫出日銷售量與時(shí)間的一次函數(shù)關(guān)系式.
()求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天.(日銷售金額每件的銷售價(jià)格日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為 .
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014課標(biāo)全國Ⅰ,文12】已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( ).
A.(2,+∞) B.(1,+∞)
C.(-∞,-2) D.(-∞,-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖北省荊、荊、襄、宜四地七?荚嚶(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù).
(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若有兩個(gè)極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中且.
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)證明:當(dāng)時(shí),函數(shù)在上為減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com