【題目】甲參加AB,C三個(gè)科目的學(xué)業(yè)水平考試,其考試成績(jī)合格的概率如下表,假設(shè)三個(gè)科目的考試甲是否成績(jī)合格相互獨(dú)立.

科目A

科目B

科目C

(I)求甲至少有一個(gè)科目考試成績(jī)合格的概率;

(Ⅱ)設(shè)甲參加考試成績(jī)合格的科目數(shù)量為X,求X的分布列和數(shù)學(xué)期望.

【答案】(I);(II)見(jiàn)解析.

【解析】試題分析:

(1)利用對(duì)立事件可得甲至少有一個(gè)科目考試成績(jī)合格的概率是;

(2) 依題意X=0,1,2,3.由題意求得分布列可得數(shù)學(xué)期望為EX=

試題解析:

(I)記“甲至少有一個(gè)科目考試成績(jī)合格”為事件M

P)=(1-)×(1-)×(1-)=,

所以PM)=1-P)=

(II)依題意X=0,1,2,3.

PX=0)=(1-)×(1-)×(1-)=;

PX=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1-)×==;

PX=3)=××==

PX=2)=1-PX=0)-PX=1)-PX=3)=

所以,隨機(jī)變量X的分布列為:

X

0

1

2

3

P

EX=0×+1×+2×+3×=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合其中,集合.

(1)若,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn)

1)求拋物線的方程及準(zhǔn)線的方程;

2)過(guò)焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問(wèn)是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個(gè)命題:

①方程有且僅有個(gè)根;②方程有且僅有個(gè)根;

③方程有且僅有個(gè)根;④方程有且僅有個(gè)根;

其中正確命題的序號(hào)是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)分析,南雄市精細(xì)化工園某公司生產(chǎn)一種化工產(chǎn)品,當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本y(萬(wàn)元)可以看成月產(chǎn)量x()的二次函數(shù);當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬(wàn)元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬(wàn)元,為二次函數(shù)的頂點(diǎn).寫出月總成本y(萬(wàn)元)關(guān)于月產(chǎn)量x()的函數(shù)關(guān)系.已知該產(chǎn)品銷售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少時(shí),可獲最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3),求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

周銷售量(單位:噸)

2

3

4

頻數(shù)

20

50

30

根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2,3噸和4噸的頻率;

已知每噸該商品的銷售利潤(rùn)為2千元,表示該種商品兩周銷售利潤(rùn)的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)袋中有7個(gè)大小、形狀相同的小球,6個(gè)白球1個(gè)紅球.現(xiàn)任取1個(gè),若為紅球就停止,若為白球就放回,攪拌均勻后再接著。囋O(shè)計(jì)一個(gè)模擬試驗(yàn),計(jì)算恰好第三次摸到紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆安徽百校論壇高三文上學(xué)期聯(lián)考二】已知函數(shù).

(1)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(2)是否存在整數(shù),使得函數(shù)在區(qū)間上存在極小值,若存在,求出所有整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案