橢圓的中心在原點,焦點在軸上,長軸長為4,短軸長為2,則橢圓方程是(  )
A.B.C.D.
B

試題分析:因為橢圓的中心在原點,說明方程為標準方程,同時焦點在x軸上,說明x2比上的分母大,同時長軸長為2a=4,a=2,短軸長為2b=2,b=1,那么可知橢圓的方程為,故選B.
點評:解決該試題的關鍵是理解橢圓的幾何性質,運用a,b,c表示出來得到求解。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為的橢圓過點,為坐標原點,平行于的直線交橢圓于不同的兩點。

(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、PB與直線ly=-2分別交于點M、N.

(1)設直線AP、PB的斜率分別為k1k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上有兩點P、Q ,O為原點,若OP、OQ斜率之積為,等于(      )
A. 4B. 64C. 20D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線 和橢圓,則直線和橢圓相交有(   )
A.兩個交點B.一個交點C.沒有交點D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的離心率為,焦點在x軸上且長軸長為30.若曲線上的點到橢圓的兩個焦點的距離的差的絕對值等于10,則曲線的標準方程為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=x+3與曲線=1交點的個數(shù)為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個焦點坐標為,那么的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心在原點O,它的短軸長為,相應的焦點的準線了l與x軸相交于A,|OF1|=2|F1A|.
(1)求橢圓的方程;
(2)過橢圓C的左焦點作一條與兩坐標軸都不垂直的直線l,交橢圓于P、Q兩點,若點M在軸上,且使MF2的一條角平分線,則稱點M為橢圓的“左特征點”,求橢圓C的左特征點;
(3)根據(2)中的結論,猜測橢圓的“左特征點”的位置.

查看答案和解析>>

同步練習冊答案