已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(8)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x+2)=-f(x),得f(x+4)=f(x),利用函數(shù)的奇偶性即可得到結(jié)論.
解答: 解:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
則f(8)=f(0),
∵f(x)是R上的奇函數(shù),
∴f(0)=0,
即f(8)=f(0)=0,
故答案為:0
點(diǎn)評:本題主要考查函數(shù)值的計算,根據(jù)條件結(jié)合函數(shù)的奇偶性進(jìn)行條件轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式92x-1<3
3
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個內(nèi)角A,B,C對應(yīng)三邊長分別為a,b,c.若C=3B,
c
b
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-4|+|x-3|>a對一切實數(shù)x恒成立,實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時滿足以下4個條件的集合記作Ak:(1)所有元素都是正整數(shù);(2)最小元素為1;(3)最大元素為2014;(4)各個元素可以從小到大排成一個公差為k(k∈N*)的等差數(shù)列.那么A33∪A61中元素的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果等差數(shù)列{an}中,a4=4,那么a1+a2+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(1)=2,f(x+1)=-
1
f(x)
,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)E,F(xiàn)是正△ABC的邊BC上的點(diǎn),且BE=EF=FC,則tan∠EAF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-tan(
π
6
-α)•x+1在[
3
2
,+∞)上單調(diào)遞增,則α的取值范圍是( 。
A、[kπ-
π
6
,kπ+
2
3
π),(k∈Z)
B、(kπ-
2
3
π,kπ+
π
6
],(k∈Z)
C、(-
2
3
π,+∞)(k∈Z)
D、(-∞,kπ+
π
6
],(k∈Z)

查看答案和解析>>

同步練習(xí)冊答案